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The canonical ensemble is investigated for classical self-gravitating matter in a 
finite container A caJ c[~d, d =  3 and 2. Starting with modified gravitational 
interactions (smoothed-out singularity), it is proven by explicit construction 
that, in the w*-topology, the canonical equilibrium measure converges to a 
superposition of Dirac measures when the limit of exact Newtonian gravita- 
tional interactions between classical point particles is taken. The consequences 
of this result for more realistic classical systems are evaluated, and the existence 
of a gravitational phase transition is proven. The results are discussed with view 
toward applications in astrophysics and space science. Some attention is paid 
also to the problem of founding thermodynamics by means of statistical 
mechanics. 

KEY WORDS:  Canonical ensemble; classical point particles; unstable inter- 
actions; Dirac measure; mean-field limit; equilibrium states; gravitational phase 
transition. 

1. I N T R O D U C T I O N  

One of the yet unanswered questions of fundamental interest in physics is 
whether or not the laws of thermodynamics hold for systems controlled 
mainly or exclusively by gravitational interactions. As a matter of fact, this 
problem is rather controversially discussed in the literature. In view of this, 
it is interesting to observe that some basic aspects of the statistical 
mechanics equilibrium of classical self-gravitating matter (see the discus- 
sion below) have so far not been subject to rigorous mathematical con- 
siderations. It can be expected that careful reconsiderations of these aspects 
will shed new light on the above controversy. 

So far, exact equilibrium statistical mechanics results in the N-particle 
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phase space FE~1(N), i.e., for finite systems, with purely gravitationally 
interacting classical point particles have been derived for one- and for two- 
dimensional systems (d=  1 and d =  2) only. (m) In ref. 1, the exact equation 
of state was obtained for an isothermal system in a container in one and 
in two spatial dimensions (see also ref. 3). In ref. 2, the one-particle dis- 
tribution function of the one-dimensional system was evaluated exactly 
both for the canonical and for the microcanonical ensemble in all N, but 
with fixed center of mass, and then compared with the results obtained 
from the mean-field limit. The exact evaluation of the one-particle equi- 
librium distribution function for a finite system in two spatial dimensions 
has not been achieved. No comparable results exist at all for the finite 
three-dimensional systems. On the contrary, it has been often stated that in 
three spatial dimensions no exact classical statistical mechanics equilibrium 
state exists (~'4-9) but some kind of quasiequilibrium state only (e.g., refs. 8 
and 10), calculated by means of a mean-field approximation that is essen- 
tially equivalent to the continuum approximation, (11 13) and that is expec- 
ted to become exact in the mean-field limit. The reason for that belief lies 
in the peculiar nature of the Newtonian gravitational interactions which 
are expected to cause the ultimate collapse of a self-gravitating system, or 
of parts of it, to a point singularity. It should be noted that such a point 
singularity is interpreted in the cited references as contradicting the 
principles of statistical mechanics equilibrium ("To obtain any sense from 
statistical mechanics we must consider systems in which these highly 
desirable states with infinite weight are unattainable'IS)). 

Nonexistence of thermodynamic equilibrium for three-dimensional 
classical self-gravitating systems is also regarded to be manifest from the 
divergence of the various partition functions (e.g., ref. 2), which is due to 
the local singularity of the Newtonian pair interaction potential. In order 
to obtain well-defined expressions for the classical partition functions, a 
short-distance modification of the Newtonian interactions has to be intro- 
duced (4'7-9'14'15) which cuts off or smoothes out the local singularity, and 
the system has to be confined to a finite container A[3]. (14A5) 

Let us now critically inquire into the arguments presented above. 
Roughly speaking, the arguments for the nonexistence of a thermodynamic 
equilibrium state of classical self-gravitating matter can be grouped into 
two different kinds. On the one side there are the partially intuitively 
motivated arguments, rejecting the possibility of a thermodynamic equi- 
librium state of classical self-gravitating matter because it is tacitly assumed 
that a thermodynamic equilibrium state must somehow be smooth and 
extended, as is familiar from usual (laboratory) thermodynamics. On the 
other side there are the related but more technically oriented arguments, 
rejecting the possibility of a statistical mechanics equilibrium state of classi- 
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cal self-gravitating matter because of the nonexistence of the partition func- 
tions, which play a fundamental and well-known role in the calculation of 
the thermodynamic quantities for systems with short-range stable inter- 
actions/16) It is obvious that both lines of thought are closely oriented to 
"classical thermodynamics," which was developed for systems of laboratory 
size. However, it is tempting to argue that the above difficulties with the 
concept of a thermodynamic equilibrium state of classical self-gravitating 
matter arise because of a biased standpoint regarding what must be the 
properties of a thermodynamic equilibrium state. Let us therefore try to 
take a less biased standpoint and consider a generalized meaning of equi- 
librium thermodynamics simply as a tool that describes the average fate of 
physical systems possessing an overwhelmingly large number of degrees of 
freedom, without making too restrictive assumptions about the properties 
of the final state. However, such a generalized concept of a thermodynamic 
equilibrium state must incorporate the usual notion and thus has to be 
formulated in terms of a natural extension of the established concepts of 
statistical mechanics equilibrium. Having said that, let us now first consider 
a Gedankenexperiment and try to guess the final fate of self-gravitating 
classical matter in an idealized special situation. 

We consider a large system of N purely gravitating classical point par- 
ticles. The system is confined to an energetically open finite container A ~31 
in order to prevent particle escape. Furthermore, due to the interaction 
with the boundary, the angular momentum that is possibly stored in close 
binaries will finally be transported out of the system. Such a system should 
show a strong tendency to shrink, giving up the liberated gravitational 
energy to the outside world. Obviously this scenario is reminiscent of the 
situation depicted when discussing the canonical ensemble. Now, if we 
assume that the system actually collapses to a single material point, it is 
further clear that it cannot collapse any further. In other words, the whole 
system will settle down in a single point. This means that the material point 
should indeed be the ultimate equilibrium state. 

Following our reasoning, that equilibrium state should be describable 
in terms of, say, the canonical ensemble. It should be noted that the 
argument that the configurational integral Q does not exist for particles 
with purely Newtonian interactions ~2) does not pose a severe problem for 
our reasoning. Of course, when Q and, hence, the partition function Z 
exist, then Z is a convenient tool for the calculation of the thermodynamic 
quantities. However, the physical concept of a statistical mechanics equi- 
librium state is independent of concepts such as thermodynamic relations, 
from the beginning. Here, the basic quantity is the phase space probability 
measure #, and that quantity has a meaning independently of whether Q 
exists or not. 
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In order to incorporate such exotic states like material points as equi- 
librium states in the framework of statistical mechanics we have to weaken 
somewhat the postulates which so far govern equilibrium statistical 
mechanics (see, for instance, ref. 16). Let us therefore introduce the notions 
of "strong formulation" and of "weak formulation of thermodynamics in 
terms of statistical mechanics." (We consider here only continuous 
systems, (16) i.e., the phase space will not be a lattice). In both cases the 
thermodynamic equilibrium state is identified, as usual, by a corresponding 
equilibrium probability measure on the phase space, given as the usual 
expression for the microcanonical, or the canonical, etc., probability 
measure, involving the Hamiltonian of the system. We stipulate that by the 
strong formulation we understand the following: It is required that the 
corresponding expressions for the thermodynamic potentials of the various 
ensembles (i.e., the entropy, the free energy, etc.) exist for finite N as boun- 
ded functions of their natural variables, which restricts the allowed forms 
of the Hamiltonian. For instance, the canonical equilibrium measure is 
then necessarily absolutely continuous with respect to Lebesgue measure. 
In the strong formulation the partition functions exist par force, and it is 
this formulation that is usually understood in the literature (16) as yielding 
phenomenological thermodynamics in an appropriate N ~  oo limit. It 
should be noted, however, that the strong formulation does not mean that 
the equilibrium state is homogeneous. Complementary to that now, we 
propose to introduce also a weak formulation and to relax somewhat the 
constraints on the probability measures. We propose to allow as (weak) 
thermodynamic equilibrium states also those weak* limit points (meaning 
the limit in the space of distributions, roughly) of an infinite sequence of 
thermodynamic equilibrium states within the strong formulation for which 
the thermodynamic potentials cease to exist as bounded functions, 
provided the measures behave reasonably in an appropriate N ~ oo limit. 
By the latter statement we mean that the result must not depend on 
whether we take a w*-limit for N <  oo and then let N go to infinity or 
whether we take that limit after we let N--, o0. In the weak formulation the 
canonical equilibrium measure, for instance, is allowed to be a Dirac 
measure. 

Having introduced the above distinction, we return to the considera- 
tion of classical self-gravitating matter consisting of Newtonian point 
particles~ with Newtonian gravitational interactions. The nonexistence of 
the partition functions for these systems immediately implies that these 
systems do not have a thermodynamic equilibrium state in the strong 
sense. However, it is one of the aims of this paper to prove the existence 
of a statistical mechanics equilibrium state within the weak formulation. 
Obviously, the weak formulation thus offers a possibility of investigating 
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equilibrium statistical mechanics for systems for which the strong formula- 
tion does not hold. In this sense the weak formulation might be viewed as 
being complementary, not alternative, to the strong one. 

A few words of caution: The above concept of the weak formulation 
means that we shall treat the Newtonian expression for the gravitational 
interactions as if it were valid down to arbitrarily small interparticle distan- 
ces. Although that is unphysical, from our results we will later be able to 
draw conclusions about the thermodynamics of physically more reasonable 
approximations to real systems. 

In Section 2 the weak*-limit of the canonical equilibrium measure # 
will be calculated for a finite system. More precisely, we will consider N 
classical point particles in a container A E32 with finite volume ~ ,  which 
interact through modified gravitational pair interactions (smoothed out 
singularity) and with an externally generated gravitational potential ql. It 
will then be proven that, as the interaction potential converges pointwise 
to the exact Newtonian interaction potential, the configurational equi- 
librium density gN(rl . . . . .  r N )  of the canonical ensemble converges, in the 
w*-topology, to a superposition of Dirac distributions, i.e., 

N 

IA d3rA#exp[-flNm(~(r)] l~ 6( r - r i )  (1.1a) gu(rl ..... rN) ~ [3] i =  1 

with 

JV" 1 = ;Am d3r exp[-/?Nm~b(r)] (1.1b) 

and m the particle mass. As usual, /3 -1 denotes the product of the 
Boltzmann constant kB with the temperature. The limit (i.1) is proven for 
a very large class of paths in the space of regularized gravitational inter- 
actions. The limit is likely to be completely independent of that path; 
however, that is not shown here. 

Result (1.1) in fact proves that in the limit of Newtonian gravitational 
interactions the canonical ensemble describes systems that have collapsed 
to a single material point. The probability density of finding a collapsed 
system at r EA [31 depends on the external potential ~b and is given 
by a Boltzmann-like factor (strictly, it is not the Boltzmann factor). For 
~b--0, the localization in A [3] is completely indeterminate, and the 
Boltzmann-like probability density reduces to ~ 1 

We will also briefly address, in Section 2, the corresponding problem 
in two-dimensional physical space. (The one-dimensional problem has been 
solved in ref. 2. In one spatial dimension, no collapse occurs.) In ref. 1 it 
has been shown that, for finite isothermal systems in two spatial dimen- 

822/55/i-2-i4 
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sions the configurational integral Q exists, for given particle number N, 
particle mass m, and given container A [2] with two-dimensional volume d ,  
only if the temperature T exceeds a critical value Tc. For T <  To, Q 
diverges to + ~ .  It has been conjectured (1) that this has to be interpreted 
as evidence for the collapse of such systems to a single (2D) material point 
for T <  To. The technique presented in this work to prove (1.1) for three- 
dimensional systems may equally well be applied (after some minor 
modifcations) to two-dimensional systems. Thereby we will see that an 
analogue of (1.1) holds if the temperature lies below a critical value To, 
with To < To. This result verifies, and extends, the corresponding conjecture 
given in ref. 1; however, only for T <  To. In this sense, the results presented 
here for the two-dimensional systems are complementary to those given in 
ref. 1. A rigorous treatment of the regime To < T <  Tc has to be left for 
future investigations. 

Result (1.1) is valid in the N-particle phase space FEa1(N) for d = 3 ,  
and also for d =  2 if T <  To. On the other hand, equilibrium statistical 
mechanics is expected to become exact (i.e., equivalent to phenomenologi- 
cal thermodynamics) in an appropriate N--. oo limit only. For stable inter- 
actions (16) the usual thermodynamic limit (infinite volume) is the 
appropriate one. For unstable interactions, as are the gravitational forces, 
the appropriate limit is the mean-field limit. (15'17) The weak formulation 
requires proving the pendant of (1.1) in the mean-field limit. One can 
conceive of the following two procedures: (1)One can take the singular- 
interactions limit (denoted by w*-lim.) first and then the appropriate 
infinitely many-particle limit; (2) one can first take the mean-field limit and 
then go over to singular interactions. Both limiting procedures must yield 
the same result. The first procedure can immediately be carried out. We 
obtain from (1.1) 

lim [w*-lim gN(rl,..., rN) ] = JAIl3] v(d3r) ~-I 6 ( r -  ri) (1.2) 
N ~ o o  i = 1  

where v(d3r) is a probability measure that replaces the Boltzmann-like 
measure in (1.1). The measure v(d3r) that comes out in the limit N--* oo 
depends on the chosen scaling of ~b and m with respect to N. 

In Section 3 it is shown that (1.2) also holds if the mean-field limit, as 
established in ref. 15, is taken before letting the interactions become 
Newtonian. The various possibilities for v(d3r) are explored there. Use will 
be made of a representation theorem for permutation-invariant measures 
on infinite Cartesian products of measurable spaces. (~8) 

It is of interest to explore some of the implications of the above results 
for more realistic model systems. By "more realistic model systems" we 
understand mathematical models of self-gravitating point particle systems 
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which take into account that the concept of Newtonian point particles with 
purely Newtonian classical gravitational interactions means an idealized 
mathematical approximation. This approximation is physically sensible 
only if the typical interparticle distances are considerably larger than the 
sizes of the real particles. For instance, more realistic model systems in the 
above sense are self-gravitating fermionic systems. But so are classical 
models that take the size of the particles into account heuristically through 
the introduction of a short-distance modification of the Newtonian poten- 
tial, which extents over the size of a particle. The latter models may be 
viewed as a classical approximation to quantum mechanical systems when 
the size of the particles is assumed to be the classical Bohr radius or to be 
the nucleon radius. However, as classical particles one can also take dust 
particles, stars, or perhaps even galaxies. Gravitating fermions have been 
treated extensively in the literature (e.g., refs. 12, 17, 19-21, and references 
therein). However, comparatively few explicit yet rigorous results exist (t4'15) 
for the classical interaction approximation, i.e., the smoothed-out inter- 
actions. Therefore, in Section 4 some attention is paid to the problem of 
(strong) isothermal equilibrium for systems of particles with modified 
Newtonian interactions. 

Among other questions, we will address the following problem: Given 
an isothermal system confined to a hollow sphere, the particle interactions 
being given through only slightly modified Newtonian interactions (in the 
sense that the local singularity is smoothed out), what is the overall struc- 
ture of the exact statistical mechanics equilibrium state in the mean-field 
limit? Our goal will be to clarify the role that is played for this problem by 
the well-known isothermal Emden gas spheres. Rather recently ~4'22) it has 
been stated that, for finite systems (N< oe), in the limit of vanishing 
modification of the interactions a (locally) stable isothermal Emden gas 
sphere, in the parameter regime where these objects exist, will give the best 
mean-field approximation to the exact statistical mechanics equilibrium 
state, up to errors of order N-1. This implies that with slight modification 
of the interactions something close to an isothermal Emden gas sphere 
should give the best approximation. With the aid of the above-mentioned 
results of Sections 2 and 3, however, we will be able to infer that the 
isothermal statistical mechanics equilibrium state (in the strong sense) con- 
verges in the mean-field limit generally not near to an isothermal Emden 
gas sphere unless the temperature is extremely high. Complementary to 
this, we shall rigorously show that, when decreasing the temperature for- 
mally from infinity down to smaller and smaller values a phase transition 
occurs at a temperature located well inside the temperature regime where 
there exist isothermal Emden gas spheres. From the proofs there is 
evidence that the transition is from a self-gravitating gas phase of nearly 
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uniform density to a phase consisting most likely of a highly condensed 
nucleus and a dilute atmosphere (a "planet"). 

The results derived in Sections 2~[ will be briefly summarized and 
then discussed in Section 5. Comparison will be made with existing results 
of the related quantum mechanical problem. Some emphasis will also be 
given to the important question of the dynamical accessibility of the 
derived equilibrium structures. 

2. THE N E W T O N I A N - I N T E R A C T I O N  L IMIT  FOR FINITE 
S Y S T E M S  

We start with the consideration of the three-dimensional systems 
(d=  3). The treatment of the two-dimensional (d=  2) systems requires only 
moderate changes as compared to the case d =  3. For that reason the 
results for d = 2  will be stated without proof at the end of this section; 
however, it will be briefly outlined where the differences in the treatment of 
d = 2 and d = 3 come in. 

In nearly all of what follows we assume that all quantities are 
measured in suitable dimensionless units such that h = 1, G = 1, and kB -- 1, 
where h is Planck's constant divided by 2n, G is Newton's gravitational 
constant, and kB is Boltzmann's constant. 

Let A t33c E3 denote the interior of a three-dimensional, simply con- 
nected box with volume ~//, which is bounded by a smooth but reflecting 
boundary ~A E33. The largest possible Euclidian distance between two 
points on ~A [3] is denoted by 41. The closure A[3]u ~A E33 is denoted by 
A E33. We consider N classical Newtonian point particles in A E33, with equal 
mass m, the dynamics in the corresponding phase space FE33(N) being 
determined by the Hamiltonian 

12m +~j~l= g~,7(Iri-rjl ) + m(~(ri) + W(OA E33, ri) 
i r  

2 

i = 1  

with r; e A E33, and with the Pie N 3 being the particle momenta. 
The meaning of W is that of the wall potential energy; it is to reflect 

the particles from the boundary of A E33 in such a way as to provide a ther- 
mal contact with the outside world. In principle, we should allow W to 
depend on the particle momenta also, but for simplicity we assume that 
this will not be the case. That seems to be reasonable at least for systems 
which have reached thermodynamic equilibrium, in which we are interested 
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here. In thermodynamic equilibrium the influence of W on the dynamics 
inside most of A [3] should be negligible. In total this means that W has to 
be + oo on 0A E31, but has to decrease rapidly to zero away from 0A E31. To 
obtain a well-defined thermodynamic mean-field limit we shall need these 
properties of W. For the calculations in the present section, however, we 
are allowed to set W equal to zero inside A E3!, for simplicity, and which we 
hereby do. 

The contributions from all external sources to the gravitational 
potential are contained in ~. Thus, inside A E3~, ~b is a solution of Laplace's 
equation. We assume ~b e C ~ [31), for simplicity. 

The interactions between the particles are described by V. This inter- 
particle potential energy is split into two parts: 

V~,7(jr,-rj[) = V(')(lr~- rj[, e) + 7V(2)(lr~- rj[) (2.2) 

with e, 7 e ~  +, where ~+ := ~ + u  {0}. The two interaction energies have 
the following meaning: V ~) is a member of a convenient class of modified 
Newtonian interaction energies. It describes purely attractive but soft 
(without singularity) interactions. It converges pointwise to the classical 
Newtonian potential, denoted by Vd, as ~--* 0. Moreover, the modifica- 
tions to the Newtonian interactions will be important (in a suitable sense 
to be explained below) at small interparticle distances only. It is the inter- 
action energy V ~) that concerns us in this work. The second part, V (2), is 
included in (2.2) only for the sake of broader generality. It will be chosen 
such that it does not influence any of the principal results to be derived 
here. It accounts for possible further central forces of short range, e.g., finite 
repulsive forces. By "short range" we mean that with increasing distance 
between the particles the contributions from V ~2) can be neglected against 
V(1). 

Explicitly, we postulate that 

V(1)( -, -): R+ x R+ -~ ~ -  (2.3) 

is continuous in both variables and strictly increasing a.e. in the first 
variable, which implies that for given ~ the function V~ e) might have 
a horizontal tangent at ~ = 0. It is required that for any ~ E ~ § 

lira V(1)(~, e )=  -m2~ 1 (2.4) 
~ ' - * 0  

We define 

~(~,  ~) - v(i~(~, s) + m2~ 1 (2.5) 
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and require [3(4, e)l to have a convex upper envelope, denoted by cgga(~), 
which is strictly monotonically decreasing in ~e N+. Furthermore, we 
observe the following nice homogeneity property of Vd: Vcl(t~)= t -1Vd(~) 
for any t e ~ +. Therefore, in addition to the above postulates we require 
V(1)( ., .) to be homogeneous of degree - 1 ,  i.e., 

V~)(t~, ta) = t IV(1)(~, ~) (2.6) 

For V (2) we choose a bounded and smooth function, which decreases 
rapidly to zero with increasing argument (e.g., a sufficiently differentiable 
function multiplied by a function of rapid decrease; see, for instance, 
ref. 23). The typical range ro of V (2) has to fulfill ro41 1 ~ 1. 

The above-proposed properties of V (~) guarantee that for any small 
positive 4" and any small positive v we can find e* such that for e < e* we 
have cgd~ ) < v if ~ > ~*. That means that the modifications to the New- 
tonian interactions become important for ~<  ~* only. The combination 
(2.2) is chosen such that both for very large and for very small interparticle 
distances the attractive part dominates if e is small enough. The limit of 
purely Newtonian gravitational interactions is given by taking both e ~ 0 
and 7 ~ 0. It will become clear from the proofs given below that V (2) will 
be important only for dynamical details (which we are not interested in 
here primarily), and for the equilibria as long as e r 0. Hence, from now on 
we set 7 = 0, for simplicity, unless otherwise stated. We drop the suffix 7, 
and we omit the superscript (1) at (2.3). 

Remark. By construction, V converges for ~ ~ ~ + pointwise to the 
Newtonian expression Vr for the gravitational interactions. The con- 
vergence is, however, not uniform in 4. The bearing of this on the physics 
is readily seen by writing V(., e) explicitly as the sum of Vol and A(., e) 
given in (2.5). The quantity A(., e) can be interpreted physically as an 
interaction energy to which there corresponds a force that is strictly 
repulsive at small enough interparticle distances, and that is singular for 
zero interparticle distance, just to stabilize the singular attractive New- 
tonian gravitational forces. This holds for any e > 0. When e ",, 0 the range 
of the stabilizing force is reduced to zero but its maximum strength is 
always + oo. 

Let us assume that the particles are distributed in A r3J according to 
the canonical ensemble, with equilibrium density f ~ "  given by 

f ~  = (N! Z~) 1 exp(-flH~) (2.7) 

where Z~(A {37, N,/3) is the canonical partition function 

Z~(A [3], N,/3) = (N!) ~ f exp(-/3H~) dz (2.8) a/- [3](N) 
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The measure & is the usual Cartesian product measure on/ ' [3](N),  and/~ 
is the inverse temperature, essentially. Since (2.7) factorizes into the 
momentum part and the configurational part, and since (2.7) yields a 
(trivial) Gaussian measure over the momentum subspace N3N of F[33(N) 
which is independent of s, it suffices to restrict the considerations to the 

A[3] where configurational subspace O(N) c F[33(N), with O(N) = X~V= ~ l,k , 
A [33 with subscript k denotes the domain of particle k. The canonical 
probability measure on t2(N) is given by 

#~N)(doo)=Qg~exp - ~.=~/3g(Iri-rjl, E) ,~(d~o ~N)) (2.9) 
i C j  

where the configurational integral Q~ reads 

Q,( A E~, N, ~) = ~,~f- ~N ~ exp - ,., flV(lr~-rjl, e) ,~(doa (N)) (2.10) 
i , j=l  
ivs j 

with 

and 

N 

do(N)= I~ d3rk (2.11) 
k = l  

N 

)~(d6o(N)) = H exp[--flm~b(rk)] d3rk ( 2 . 1 2 )  

k = l  

We would like to know (2.9) in the limit s + 0 for fl > 0. 
First of all, since Q, diverges to + oo as e + 0, it is clear that the 

density of (2.9) tends to zero wherever I r i - r j l  r 0 for all i and j. Thus, the 
interesting points ~o in g2(N) are those where [ r i - r  i1 = 0 for at least one 
pair (i, j), since exp(- f lV)  diverges to + oo then, too, in the limit e--*0. 

For the following investigations it is convenient to single out the coor- 
dinates of any two particles, here the Nth and the ( N -  1)th. We shall use 
the abbreviations r u = r and r N _  1 = r ' .  

It suffices to consider the density of (2.9) with respect to do) (m, 
denoted by gN(r, r', (5; ~), where (5 e f2(N-- 2) [we shall sometimes simply 
write gN((.O, g) when it is not necessary to distinguish between the particle 
coordinates ]. Explicitly, the density reads 

gu(r, r', cb; ~)= Q~- I(A [33, N, fi) 

• exp { - /~[  V( Ir - r'l, E) + m~b(r) + m~b(r')] } 

x exp - ~ / / [V( l r - r i l ,  e )+  g ( l r ' - r i l ,  e)-q-m(b(ri)] 
i = l  

x exp - ~ , ~ / ~ g ( I r i - r j [ ,  ~) (2.13) 
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right-hand side of (2.13) is abbreviated by introducing a positive The 
function h such that 

gu(r,r',~;e)=QjlexpE-~V(lr-r'l,~)]h(r,r',~;e) (2.14) 

We concentrate first on the case r # r'. We shall n6w prove 

lim gu(r, r', c~; 8) = 0; r # r '  (2.15) 
~ 0  

pointwise. 

ProoL For finite e we have the estimate 

gu(r, r; ~; e) <~ Q71 expE -/~V(Ir - r'l, e)] h,(r,A r') 

/~(r, r') = sup [h(r, r', ~5; e)] 

(2.16) 

Since l i m , ~ o e x p F - / ~ V ( I r - r ' l ,  e)] is finite for I r - r ' l  50 ,  to prove (2.15) 
it suffices to show 

lim O~-l/~(r, r ' ) = 0  (2.18) 
~--+0  

for r ~ r ' .  We estimate /~(r,r ' )  from above. By construction, V(~,e) is 
bounded from below, with the infimum given by 

Furthermore, since ~b is 
such that 

~b_ ~<~b ~< ~b+ (2.20) 

in A e33. We then obtain the strict inequality 

[t,(r,r')<exp{[(N+l)(U-2)/2]~[V(O,O[--~Um~b } (2.21) 

inf V(~, e) = V(0, e) < 0 (2.19) 

C~ there exist real numbers ~b+ and ~b 

for r # r'. The right-hand side of (2.21) is independent of r, r', and will be 
abbreviated as 

r.h.s.(2.21 ) = ~ (2.22) 

Inequality (2.21) implies that (2.18) is fulfilled if 

lim Q~ 1~ = 0 (2.23) 
e ~ O  

where 

(2.17) 
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We now construct a lower bound of Q~ which is sufficiently strong to prove 
(2.23). 

Let # denote any permutation-invariant probability measure on f2(N), 
with density f u  (with respect to Lebesgue measure). We define the entropy 
of #, denoted by S(#), by 

S(#) ~ - fg2(N) fN In fN do(N) (2.24) 

and the corresponding free energy F(#) by 

F ( # )  - # ( H ; )  - ~ - ~ S ( # )  (2.25) 

where H i is defined in (2.1), and #(Hi) is the energy of #. Our starting 
point is then the well-known fact that, for given fi, the configurational free 
energy f c~ _fl-1 In Q~ pertaining to (2.10) obeys the inequality 

Fc~ F(#) (2.26) 

equality holding only for # given by (2.9). Obviously, (2.26) can 
immediately be translated into a lower bound for Q, upon choosing a 
convenient # and then evaluating the right-hand side of (2.26). 

Let # be a product measure, with the density given by 

N 

fu(~ = I1 p(r,) (2.27) 
i 

Then S(#) can be written as an entropy functional ~(p) ,  given by 

5r --N fAE3~ P(r) ln p(r) d3r (2.28) 

Similarly, the energy #(H') becomes the energy functional 

g(p) = I N ( N -  1)/2] I~t3~• p(r) p(r') V(]r - r ' [ ,  e) d3r d3r ' 

+ NfAE31 p(r)rn~b(r) d3r (2.29) 

which leads to the free-energy functional 

~ ( p )  = g(p) _/~- 'Se(p) (2.30) 
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We now choose 

P = PoX ~Bs,,01 (2.31) 

where Po ~ ~+ is a constant, and Bs, ro is the three-dimensional ball with 
center r o s A  E31 and radius s. For simplicity we require Bs,,o~cAE31 
(proper subset). Then ;~ is the usual characteristic function of set theory. 
Thus, 

Po = [(4/3) rcs 3] 1 (2.32) 

[In order to evaluate 5e(p) for p given by (2.31), we have to consider a 
sequence of strictly positive probability densities with limit given by the 
right-hand side of (2.31).] Abbreviating the right-hand side of (2.31) by pB, 
we then obtain 

~ (pB) = [ N( N- -  1)/23 I~s.,0 I~s, r0 V(Ir-r'l, ~ ) p2 d3r d3r , 

+ NQ pornqJ(r)d3r+N~ -1 lnpo 
s, r 0 

<~ I N ( N -  1)/2] V(Zs, ~) + Nm(~+ + Nf1-11n Po (2.33) 

Upon multiplying (2.33) by - 8  and taking the exponential, we obtain an 
explicit lower bound for Q~. We multiply this bound for Q, by ~ 1. 
Furthermore, since (2.33) is valid for any choice of s, we now choose 

By Eq. (2.6) we have 

and 

s = es o (2.34) 

V(0,  ~) = ~ 1V(0 ,  1 ) ( 2 . 3 5 a )  

V(2es0, e) = e - 1V(2so, 1 ) (2.35b) 

In total we obtain 

O ~ - i  > [(4/3) rts3]Nexp[--~Nm(qk+ --(~ )] ~3N 

X e x p { e - l ~ [ N ( N  - 1)] V(2so, 1 ) l - ( N +  1) (N-2)LV(0 ,  t)1]/2} 

(2.36) 

Now, it follows from the proposed properties of V(~, 8) that [V(2so, 1)l is 
a positive, continuous, and decreasing (a.e.) function of so, with maximum 
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value given by iV(0, 1)J. That guarantees the existence of a positive s* such 
that 

]V(2so, 1)1 > [ I - 2 / N ( N -  1)] IV(0, 1)1 for So<S* (2.37) 

Therefore, choose So such that (2.37) is fulfilled. Then 

N(N-1)JV(Zso, 1)[-(N+I)(N-2)IV(O, 1)I-2Y>O (2.38) 

This implies 

e3Uexp(e_lfly) ~-~o , + ~  (2.39) 

for /~>0, which proves (2.23) and, hence, (2.15). | 

Remark. A corollary of (2.39) is that o~(p B) as given by (2.33) tends 
to minus infinity as e ~ 0. We shall come back to this point in the next two 
sections. 

Result (2.15) means that w*- l im~0 gN(r, r', 05;e) is proportional to 
the Dirac distribution 6(r - r'). This follows (e.g., ref. 24) immediately from 
the fact that gN(r, r', 05; e) is a probability density, i.e., a distribution of 
order zero that is normalized to one, 

ff'd(N) gN(09; ~) dfl)(N)= 1 (2.40) 

independently of ~. The general solution to [(2.15), (2.40)] in the space of 
positive measures is 

lim gu(r, r', c5; e )=  d(r, 05) 6(r--  r') (2.41) 
~ 0  

(in the w*-topology), where d;(r, 05) is a probability density which is inde- 
pendent of r'. The probability density G(r, (5) can immediately be evaluated 
further by noting that the choice r = ru, r ' =  r u 1 is ambiguous, since (2.9) 
is invariant against permutations of the particle indices, which holds also 
in the limit e ~ 0. Hence 

N 2 

d(r, 05)=G(r)  I-[ 6 ( r - r i )  (2.42) 
i = 1  

where G(r) is a probability density depending only on r. Note that 
[(2.41), (2.42)] is permutation invariant, although not written in a form 
that displays this symmetry explicitly. A manifestly invariant form is readily 
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obtained through switching back to the previous notation, i.e., r--*rN, 
r ' ~  rN_l, and rewriting [(2.41), (2.42)1 in the equivalent form 

N 

w*-lim gN(CO; e)=fA d3r, ' G(rc) [ I  6 ( rc - r i )  (2.43) 
e ~ 0  [3] i = 1  

The right-hand side of (2.43) describes a Gibbs ensemble of N-particle 
systems, each of which has collapsed to a single material point, as argued 
in the introduction. We go one step further and determine G(rc). 

The distribution G(rc) has the obvious interpretation of being the 
probability density that a system has collapsed at the point rceA E32. 
Clearly, G(re) will depend on the geometry of A E31 and on external condi- 
tions, e.g., on the details of the superimposed external gravitational field. 
We shall now prove 

exp[ - flUm(~(r c) ] 
G(r~) - ~AE31 exp[-/~Nm~b(r)] d3r (2.44) 

which, together with (2.43), verifies (1.1). 

Proof. Because of the equivalence between (2.43) and E(2.41), 
(2.42)] (note that r = r  u and r ' = r u _  1 in E(2.41), (2.42)]), it suffices 
to consider now gN(CO;8), as 8--*0, in the case that all the particle 
coordinates coincide. We set ri = r, i = 1 ..... N, in the numerator of (2.13). 
The probability density gu((.O; 8) in this case takes the value 

gN(O); 8) = Q[1 expE-flNmqb(r)] exp{e 1IN(N-  1)/2] fl [V(0, I)[ } 

(2.45) 

which already has the desired explicit dependence on r. Furthermore, the 
product of Q j l  with exp{ IN(N-1)/2]f l[  V(0, e)[ }, which is independent 
of r, blows up as ~ --* 0, as should be the case. This can be shown by assum- 
ing that it does not blow up and then proving a contradiction with (2.40) 
upon using (2.15). Thus, the claim (2.44) follows if we can show that 

Q ~  IAE3 expE-flNm~(r)] d3r f(~)[l +O(O+)] (2.46) 

as e ~ 0 +, where f(~) does not depend functionally on ~b. 
For the evaluation of Q, as ~ ~ 0 + we single out again the position of 

the Nth particle and identify rN ~ r. In the following we shall also write 
(2(N) = A E31 • 12(N-- 1 ), in order to emphasize r ~ A E3~ and (rl ,..., rN_ ~) -- 
O5 ~ t2(N--1). Let ~ = ~  A E31 be a compact and simply connected three- 
dimensional strict subdomain of A C33, with volume I~] .  We require 

dist(J{~, 8A E3~) = g) ~ 4t (2.47) 
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uniformly. Assume r e ~ and let B6, r be the three-dimensional open ball 
with radius 6, center r, and closure B6,~. Then B 6 , ~ c c A  [3]. For all 
particles i =  1 ..... N - - 1  we can decompose their domain of integration, i.e., 
A~ 3], a s  

A~ 3] = B6, r; i u A~ 3] \B~. ~;i (2.48) 

where the additional subscript i on A E31 and B6,~ denotes that it is the 
domain of particle i. By means of (2.48) we then obtain the decomposition 

( 2 ( N -  1 ) = E (k) 
k ~ 0  

(2.49) 

with 

~(k)~_ Bs, r; i X A 3 3 \ B 6 ,  r; j (2.50) 
i 1 j 1 

This allows us to write 

Q~= ~lim~ ~ ~ ( N =  o ~,~ 1 ) f ~  • z,~ q(~176 (2.51 ) 

where q(~o; e) is the integrand of Q,. The right-hand side of (2.51) has a 
simple interpretation, which is readily illustrated by means of the following 
scheme (the term "o-particle" refers here to particles other than the Nth  
one, i.e., belonging to the subset i =  1,..., N -  1): 

r .h . s . (2 .51)~[f  {no o-particlesinB~,r} 

+ ( # realizations) • f 
1 o-particle in B6,r 

~ N -  2 o-particles outside) 

. . . . .  ; f k  o-particles in B~, 
+ ( #  reanzauons) x / < 

J ~ N -  1 - k  o-particles outside 

+ f {all o-particles in B~, r }] 

We now show that for any given 6 the term S {all o-particles in B6, r) gives 
the leading contribution as e ~ 0 +. 
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To prove this assertion, we estimate q(co; e) for che Z (k) from above, 
for all k ~< N -  2. It suffices to take into account that N -  1 - k particles are 
located outside B6,~, which means that the minimum value of the interac- 
tion energy of each of these particles with the Nth one, located at r, is 
V(6, ~). Replacing the other interaction energies by V(0, e) and estimating 
the external potential with the aid of (2.20), we find that for o5 s ~(k) 

q(co; e) < exp( - f l {  Umfb_ + ( N -  1 - k) V(,5, ~) 

+ [ k +  ( U -  1 ) ( N - 2 ) / 2 ]  V(0, e)}) (2.52) 

Abbreviating the right-hand side of (2.52) by K}k6 ), we get 

;~6• q(co; e) do)( N- 1) d3F < I~1 (~Tc63) ~ ( ~  - ~7g~3)  N - 1  k K}k2 

< "r (2.53) 

As next step we seek the maximum of K~,k6 ) with respect to kE {0 ..... N--2}.  
Since V(-, e) is negative and strictly increasing a.e., K~,k6 ) is strictly 
increasing with k. Thus, 

sup [K}k)] = "xe ,  fiI[z(N- 2) 

k ~  {0,..., N - -  2} 

= e x p ( - / ? { N m ~ b  + V(6, e) 

+ [ ( N +  1 ) ( N - 2 ) / 2 ]  V(0, e)}) (2.54) 

We now have to estimate the contribution from ,.~(N--1) in (2.51) from 
below. Let s < 6. Then B~., ~ Br, r. Let 

N - - 1  

O =  X Bs, r;i (2.55) 
i = l  

Then 

I ~ •  ZIN-LI q(~0; e) do) ~u-1) d3r 

> ~ q(~; e) &o <u 1) d3r 
• 

> L~l  (%s3) N-~ exp[-~Um~+ - � 8 9  1 )~V(Zs ,  e)] r 

where the last inequality again follows from (2.20) and from the proposed 
properties of V. 
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We now factorize out the contribution from k = N - 1  in the sum 
(2.51). We write 

Q~= lim ~ q(~o;~) do) (N 1)d3r (1 + ~ . 6 )  (2.57) 
-~f-6 /" ~ ,),Xf~ x ~(N l) 

Upon using the estimates (2.53), (2.54), and (2.56), we see that ~ ,~  is 
bounded from above by a B~,6,,, given by 

B~,~. = b e x p [ N ( 2 - 1 )  flV(2s, e)_~V(6, e ) ( N +  I ) (N-2)2  /~V(0, e)]  

(2.58) 

where b is a harmless factor that depends on g at most through a power 
law. Next we consider the sequence ~ P A [31 as e ~ 0 ,  which due to 
(2.47) means 6 ~ 0  as g - , 0 .  We choose 6 = e a o  with 6 0 > 0  fixed. We then 
have to show that there exists an So > 0 such that with s =  eSo we have 
~,~-- ,  0 as e--, 0. 

Making use of (2.6) in (2.58), we see that the right-hand side of (2.58) 
and, hence, ~,a tend to zero if there exists So > 0 such that 

N ( N - 1 )  V(2so, 1 ) -2V(6o ,  1 ) - ( N +  1 ) ( N - 2 )  V(0, i ) < 0  (2.59) 

Such an So always exists for every positive 60. To show this, for given ao > 0 
we replace So by 0 in the left-hand side of (2.59) and find 

1.h.s.(2.59)[~0~o = -2 [V(6o ,  1 ) -  V(0, 1)] < 0  (2.60) 

by (2.19). Since V(., e) is C o and strictly increasing a.e., there exists a finite 
right neighborhood ]0, s.(6o) [ of 0 such that (2.59) holds for any 
so~ ]0, s .(6o)[.  Hence, 

lim ~ ,~o  = 0 (2.61) 
~ 0  

The remaining step in the proof of (2.44) is now to evaluate the 
leading functional dependence on ~b of 

f~6• H q(~o; e) do) (N-l) d3r 

as ~ff6 ." A[3] with e--*0 +. Since ~b is C a, for ri~B6.r;i, i =  1,..., N -  1, we 
have 

~b(ri) = ~b(r) + 0(6) (2.62) 
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Thus, noting that 3--, 0 as e ~ 0, we obtain 

lim Jx~[x ~(u 1) q(C0; e) dco ~u- 1) d3r 

= fArsl exp[--flNm(~(r)] d3r lim [ qo(CO; g) do) (N 1)[l + O(g)] (2.63) 
"-~ 0 d s ( N - l )  

where qo is obtained from q through setting ~b ~ 0. Obviously, the integral 
~z~N-,qo(o~;e) dco ~N-1) does not contain ~b. We are also allowed to write 
that integral outside the integral over d3r because it is independent of r 
also, which is easily seen to hold by means of the coordinate transforma- 
tion r ; ~ r i - r  for i = I , . . . , N - 1 .  We see that (2.63) is just (2.46). This 
proves the claim. | 

Remark. Results (2.15) and, hence, (2.43) remain valid if we take the 
full Hamiltonian (2.1) into account. Result (2.44) has to be modified 
however, if we consider W(SA E31, ri) not as being identically zero on all 
A~ 31 but only on a compact subdomain of A~ 31, increasing rapidly and 
continuously to infinity as r; approaches ~A~ 31. We then have to replace 
m~b(rc) by m~b(rc) + W(~3A [33, rc) in (2.44). 

We have thus verified our intuitively motivated expectation. The 
statistical mechanics equilibrium state of a classical self-gravitating system, 
computed from the canonical ensemble for /3 > 0, is a system that has 
collapsed to a single material point. The probability density of finding that 
point located at r~ in the considered domain A E33 is given by the 
Boltzmann-like factor (2.44). However, (2.44) is not the usual Boltzmann 
factor of a system of N point particles in an external field, which is 
apparent from the occurrence of N in the argument of the exponential func- 
tions. 

For the sake of completeness, before considering the infinitely 
many-particle limit, we wish here to discuss briefly also the two-dimen- 
sional analogue of the finite systems. As mentioned in the introduction, the 
analogous one-dimensional problem was solved in ref. 2. 

Remark. In the literature, the terminology as to what is meant by 
two-dimensional is not unique. There exist two convenient interpretations 
which are mathematically equivalent: (1)One thinks of these systems as 
consisting of infinitely long parallel wires in three-dimensional physical 
space. These wires take over the role of the particles. Since then the exten- 
sive quantities like mass and energy diverge trivially, one considers such 
quantities per unit length. The physical constants are the usual ones. 
(2) One considers a strictly two-dimensional model world, and assumes 
that some "two-dimensional" physicists had developed physics much along 
the same lines as we did. The concepts of length, time, mass force, etc., are 
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then the same as in the three-dimensional world; however, some of the 
physical constants in this model world have to be redefined. Depending on 
the circumstances, it might be favorable to pick one or the other of these 
concepts. Here we like to make contact with the work presented in ref. 1, 
which uses the second concept, and which will be used here, too. To 
facilitate the comparison with ref. 1, the following is written in a dimen- 
sional manner. 

We have to replace A E33 by a simply connected finite domain 
A E23 c N2 with two-dimensional volume ~r We assume, for the moment, 
that the 2D point particles (of equal mass m) interact via exact classical 2D 
gravitational forces derived from the interaction energy 

~'(Ir - r'[) = G*m 2 In( Ir - r 'l/Z) (2.64) 

where r and r' are in A E23, and L is a normalizing length. The constant G*  
is the gravitational constant for the two-dimensional model world. Let [. ] 
denote the physical dimension of the quantity to be inserted between the 
brackets. Then G* is connected with the usual Newtonian gravitational 
constant via [G*] = [ G ] / [ L ]  and G * / [ G * ]  = 2G/[G] .  (1) 

We are interested in the configurational canonical ensemble on 
XN=I A~ 23, pertaining to the interaction Hamiltonian 

1 ~  ~ ~ ' (Ir , - r j l )  (2.65) /~(N) = ~ , : ,  /=~ 

i ~ j  

where the external gravitational field has been neglected, for simplicity. As 
mentioned in the introduction, it has been shown (11 that the configura- 
tional integral Q exists, for given particle number N, particle mass m, and 
given container A E21, only if the temperature T exceeds a critical value 
To= (kBflc) -1, given by 

T c = ( N -  1)G*mZ/4kB (2.66) 

where k B is the usual Boltzmann constant. For T <  To, Q diverges and it 
has been conjectured (a) that this has to be interpreted as meaning the 
collapse of (each of) the systems in the ensemble to a single (2D) material 
point. Clearly, the inclusion of an external gravitational field would not 
alter this result. 

Complementary to the results derived in ref. 1, we might wish to verify 
that collapse conjecture (1) by calculating the canonical equilibrium measure 
for fl > fl~. The technique presented above to treat the three-dimensional 
systems is applicable, after minor modifications, to the two-dimensional 
systems as well. We have to replace (2.64) by 

P(fr - r'l, e) = G*m 2 ln(Ir - r ' l /L  + ~) (2.67) 

822/55/1-2=15 
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for example, and then again to consider the limit e ~ 0. We might add also 
the contributions from external sources to the gravitational field. We then 
have to prove the analogue of (2.15). Following closely the steps of the 
proof of (2.15), we find, however, that we can prove the analogous result 
of (2.15) and, finally, of (1.1) only for f l>flo,  with 

flo = 2N/G-m2 (2.68) 

This means a verification of the collapse conjecture of ref. 1, but only for 
small enough temperatures. To investigate the intermediate temperature 
regime, we need sharper estimates. We have to leave open here the question 
of whether in the intermediate range flo > fl > tic a system coalesces to a 
single point, too, or whether configurations with some particles located at 
a single point but others not are of finite measure, then, also. 

3. T H E  L IM IT  N - ~  

Our goal is now to investigate the canonical probability measure in 
the limit of both N ~ oo and V ~ Vcl. For  convenience we will confine our- 
selves to the discussion of the three-dimensional systems. We would like to 
show that in this double limit the statistical mechanics equilibrium state is 
the material point, independently of whether we take first the Newtonian 
interactions limit for finite systems and then let N go to infinity, or whether 
we take first N ~ ~ for smoothed-out interactions and then take the limit 
of Newtonian gravitational interactions. 

In order to obtain a well-defined limit N ~ oo we have to bear in mind 
that the particles interact via unstable interactions. In our case this means 
that the usual thermodynamic limit does not exist. The appropriate limit to 
investigate the canonical ensemble for N ~ oo is a mean-field limit, which 
is obtained by means of suitably rescaling the interactions with N. For  
details of this limit for unstable but Lipschitz continuous interactions, we 
refer to ref. 15. For  the related mean-field problem for the van der Waals 
gas see, e.g., refs. 25 and 26. 

Remark. A rescaling of the interactions with N does not alter any of 
the finite-N results obtained in Section 2. 

We shall drop the superscript [3]  on A e3~ for simplicity. We have 
limN_. ~ g2(N)=A N, and we understand now co~A n. We consider the 
probability measures of the finite systems as probability measures on A n. 

We investigate first the limit N --* oo of (2.43). The upper limit N in the 
product of the delta distributions in (2.43) can simply be replaced by 0% 
for co e A ~. The result is just (1.2). This means that the limiting measure 
again describes an ensemble of systems which have collapsed to a single 
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material point each. Our problem here reduces to the study of G(r~) as 
N ~ o o .  

When studying this limit, setting W identically to zero inside A but to 
+ oo on ~?A no longer means a simplification. The reason is that ~b, being 
a solution of Laplace's equation, takes its minimum value on ~?A. We shall 
need an external potential, however, which takes its global minimum 
on A. Therefore, we let W be zero only on a compact subdomain of A. It 
then increases monotonically and Lipschitz continuously, with Lipsehitz 
constant L w, when approaching OA. On c~A it jumps again to infinity. 
Instead of (2.44), for the finite systems we have to take 

exp[-/~NO(rc)] 
Gu(rc) = ~A exp[ -/~NO(r)] d3r 

with 

(3.1) 

~9(r) = m~b(r) + W(OA, r) (3.2) 

(We have added the subscript N to G in order to emphasize that it is a 
measure for finite systems.) The joint potential energy 0 is Lipschitz 
continuous on A. Moreover, it is always possible now to choose W such 
that 0 takes its global minimum value on a strict subset ] c~c  A. In the 
following we always assume that this is the case. 

Remark. We shall need the Lipschitz continuity in order to take over 
directly some results of ref. 15. However, some of the results to be proved 
below remain valid if W satisfies weaker smoothness conditions. 

It remains to specify the scaling of ~ with N. We would like to allow 
for various possibilities and assume 

O = N  a ZOo (3.3) 

where a is a real number and 0o is independent of N. As will become clear 
below, (3.3) covers the relevant cases. In the following we shall always 
understand ~ in (3.1) to be given by (3.3), unless otherwise stated. Accor- 
dingly, we shall write 

e x p [ -  flNa0o(rc)] = G(a)(rc) (3.4) 
uli~m~ ~A exp[--flUa0o(r)] d3r 

There are then essentially three different limiting distributions G(a)(rc), 
depending on whether a >  0, a < 0, or a =  0. Let 6E rl be either the Dirac 
measure concentrated on F (in the case that 1" has zero Lebesgue measure) 
or (in the case that Y has finite Lebesgue measure ]/~1) be given by 
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I YI-~ z [ r ] ,  where )~[r] is the characteristic function of l c (combinations 
will be possible, too; they are not considered explicitly). We then have 

f U - 1 ,  a < 0  (3.5a) 

f f  exp[- /~0o(r~)]  
G(a)(rc) = ] ~A e x p [ - - / ~ o ( r ) ]  d3r ' a = 0 (3.5b) 

| k cSE r~, a > O  (3.5c) 

ProoL The proofs of (3.5a) and (3.5b) are trivial. To prove (3.5c) we 
abbreviate N a by p, and exp[- /~f fo( r ) ]  by f0(r). Then 

I/ exp[-/~N~O0(r)]  d3r = IE/~II~ (3.6) 

and (3.1), with (3.3), can be rewritten as 

GN(r~) = [f~(r~)/ll fu,[I p]p (3.7) 

Consider now the case rcr [ .  Then 

fo(r~) < sup fr  (3.8) 
t E A  

where strict inequality holds indeed. On the other hand, since a > 0 ,  p 
grows monotonically to infinity with N. Hence 

IIf~ll~ ~ II f~ll ~ =ess sup f6 = sup f r  (3.9) 

as N--* ~ .  Consequently, there exists a p* > 0 such that 

fo/tJfoJIp<l; p>p* (3.1o) 

Even stronger, 

lim f~/ l l f~l l~ < 1 (3.11) 
p ~  

strictly. By means of (3.7) this implies 

GN(rc) ~v , O; r~r Y (3.12) 

Now, since G N is a probability density on A for each N, and since G N does 
not vary with r c for r c e [ ,  our claim follows from standard theorems (24) of 
the theory of distributions. | 
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In total, when taking first the limit V ~ Vol and then the limit N ~ ~ ,  
the density of the canonical probability measure converges to a limit 
density g~(~o), given by 

g~(~)= fA d3rcG~a)(rc) ~ 6 ( r c - r i )  (3.13/ 
i=1 

where the three possibilities for the probability density G ~a) are listed in 
(3.5). The meaning of the various scalings becomes clear from (3.5) and its 
proof: As N ~ ~ (always), the case a < 0 means that the whole system feels 
no external influences inside A. This limit is equivalent to the situation 
where no external field is present from the beginning. The case a = 0 means 
a finite potential energy, in the external field, of the system as a whole. 
Finally, a > 0 corresponds to an infinite potential energy of the whole 
system in the field of the external sources; however, for a = 1 we have still 
a finite energy per particle due to ~p. (Clearly, the potential energy due to 
the pair interactions is always minus infinity, both for the system as a 
whole and when counted per particle.) The case a = 1 will be of primary 
interest below. 

We now have to verify that (3.13) comes out also when we let V ~  Vcl 
after having performed the mean-field limit for the smoothed-out gravita- 
tional interactions. We take the interaction Hamiltonian H'(N) as given in 
(2.1) and consider the weak limit points, as N ~  ~ ,  of the configurational 
canonical ensemble for fixed e. We again set y = 0, for simplicity. Since we 
are facing systems with unstable interactions but nevertheless would like to 
obtain thermodynamic behavior, we have to keep the total potential energy 
proportional to the particle number. As a consequence, we rescale the 
interaction energy V by a factor N -  ~, meaning a weak ( ~  1/N) pair inter- 
action. In addition, we would like the external sources to be of equal 
importance. Thus we have to keep m~b and W independent of N. This 
guarantees that as N ." ~ a particle feels mainly the self-consistent field 
generated by all the particles together, plus the contributions from the 
external sources. This mean-field scaling implies a =  1 in (3.3). Conse- 
quently, we have to verify (3.13) with G ~a) given by (3.5c). 

It may be desirable to have an explicit example. Consider the class of 
indefinitely differentiable interaction energies V ~"), n e ~, given by 

v~n)(~, e) = -m2(~ ~ + e ~) -1/~ (3.14) 

Every member of this class fulfills all the requirements proposed for V in 
Section 2. From (3.14) we obtain a 1/N interaction rather naturally in the 
following way: Along the sequence N 7 ~ we take particles of smaller and 
smaller mass such that m in (3.141 is to be replaced as m ~ N-1/Zm. This 
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implies also a rescaling of the external gravitational potential ~b as 
q) ~ N m ( J .  We shall come back to the example (3.14) at some places below. 
However, we remark that all proofs given below do not require that V is 
differentiable. 

We put these thoughts into explicit equations. In the following we 
understand 

V(~, ~ ) = N  IU(~, e) (3.15a) 

in (2.1), where U is independent of N. Furthermore, 

with m o fixed, and 

m = N -  l/2m o (3.15b) 

(~ = N m ( ~ o  (3.15c) 

with ~b o fixed, but with W fixed, too, such that ~ as given by (3.2) is 
independent of N also. Accordingly, the canonical probability measure on 
A N for N particles is given by 

with 

#~N)( de9 ) = Q~- I 

( "  

Q~(A, N, fl) = Jo(u) 

where 2(d~ (u)) now reads 

1 N exp[- (3,6, 
iv~ j 

exp 
1 u 

-WE 
i , j = l  
iTs j 

f lU(Ir i - r j l ,  e) 1 .~.(dfo (N)) (3.17) 

N 

2(d~~ = I-I exp[--fi~(rk) ' l  dark (3.18) 
k = l  

We understand (3.16) as a probability measure on A N. Then, as first step, 
for finite e we determine the weak limit points of {#~N) I N =  1, 2,...}. As 
second step we investigate the limit e ~ 0 of these weak limit points. 

We want to adopt here the results derived in ref. 15, where the 
mean-field limit has been established for unstable but Lipschitz continuous 
pair interactions. This requires a growth condition to be fulfilled by U, in 
addition to the postulates for V given in Section 2, which also hold for U 
when expressed in the rescaled quantities where necessary. We define the 
bounded positive difference function 

U(~ + r/, e) - U(~, e) - z~ {(q) (3.19) 
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where the subscript U at A/: should indicate that this function has to be 
evaluated for fixed ~ and e. We postulate that for any r e N § 

A { (q) ~< O(t/) (3.20) 

where r/~ ~ + 

Remark. Equations (3.19) and (3.20) are equivalent to the postulate 
that lor given ~ > 0, U( -, ~): N + ~ r ~-~ N - is Lipschitz continuous. 

Then, for e r  U ( I r - r ' l , e )  is Lipschitz continuous on A xA,  i.e., 
there exists a positive Lipschitz constant L U such that 

I U ( I r - r ' J , e ) - U ( I f - f l ,  e ) l~Lu ( f r -~ z l - t - l r ' - f l )  (3.2l) 

ProoL Since the le•hand side of (3.21) depends on the various posi- 
tion vectors only through r r - r ' l  and IT-f[ ,  we can rearrange the four 
position vectors in many ways keeping both [ r - r ' l  and I~ - f l  and, thus, 
the left-hand side of (3.21) fixed. In particular, in that way we can minimize 
I r -~ l  + f r ' - f l  for any given fixed f r - r ' l  and I~- f l .  Obviously, (3.21) is 
fulfilled for any four position vectors if it is fulfilled for any such minimiz- 
ing configuration. It suffices to prove (3.21) for any convex domain z/, since 
any compact domain in R3 is contained in some other compact one which 
is also convex. It is an easy exercise to show that in a convex domain, 
[ r -  ~1 + J r ' - f l  is minimized with the constraint of fixed I r - r ' l  and ]~-  fl 
if the four points are arranged collinearly, with the requirement that either 
the pair r and r' or the pair ~ and f marks the endpoints of the collinear 
configuration. Clearly, the minimizing configurations include the case 
where r = ~. This in turn implies that (3.21) holds for the minimizing con- 
figurations, and thus for all configurations, if it holds for any configuration 
for which r = ~. So from now on we set r = ~. 

Since A is compact and U continuous, it suffices further to consider 
the case where the right-hand side of (3.21) tends to zero. Without loss of 
generality we assume 

U( I r - r ' l ,  e )~  U ( I r -  ~1, ~) (3.22) 

Now write ~ = r' + x. Then 

U ( I r  - f l ,  ~)  = U (  rr - r'  - x l ,  e )  

~ U ( f r -  r'l -t- Jxr, e) = U(J r -  r'[, ~) + A v+(lxl) (3.23) 

where the inequality is obtained by means of the triangle inequality and 
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because U(., e) is monotonically increasing. The last equation in (3.23) is 
a consequence of (3.19). Together with (3.22) this gives 

IU( l r - r ' [ ,  5 ) -  U ( l r - f l ,  e)[ ~<A~(lxl) (3.24) 

Now the claim follows from (3.20). | 

We are now ready to formulate the equations that determine the 
canonical ensemble in the mean-field limit for finite 5. These equations are 
obtained following closely the steps in ref. 15; however, we include here 
also the external field q/. For details of the derivation see ref. 15. 

Let ~ be the set of all probability measures 0 on A. By #o we denote 
the associated product measure 0 | 0 | "'" on s Then, according to the 
Hewitt-Savage representation theorem,(18) any permutation-invariant 
probability measure # on s can be written (in the notation of ref. 15) as 

# =I~ v(@ I#) #o (3.25) 

where v(@[#) is a uniquely defined probability measure (ref. 18, 
Theorem9.4) on J/l. Equation (3.25) states that every permutation- 
invariant probability measure is an average over product measures. In our 
case we have d# = g(~o)do) (~). Accordingly, we write d0 = p(r)d3r. Let #~ 
be any weak limit point of {#~N)]N=I, 2,...} as given in (3.16). The 
canonical ensemble is then determined by the following statement about 
v(@[#~): Let the free-energy functional 

f(p) = (1/2) fA fA p(r) p(r') U(lr - r'l, 5) d3r d3r ' 

+ fAP(r)~b(r)d3r+~-lfAp(r)lnp(r)d3r (3.26) 

be defined on J/( as the extension of the same functional considered on 
C+,I(A), meaning the positive C ~ functions on A with integral equal to 1. 
The functional (3.26) is bounded from below as long as ~ ~ 0, and it takes 
its infimum. By J//' c j / / w e  denote the subset of probabilities Q on A with 
density p for which the free-energy functional f(p) takes its global 
minimum on J / .  Then v(dQ[#~) is concentrated on J/g'. 

Proof. The proof of the above statement is a straightforward exten- 
sion of Section 2 of ref. 15. (In the following any cited lemma or theorem 
refers to ref. 15.) In fact, since both U and 4J are Lipschitz continuous on 
A and A is compact, U and ~b are bounded on A also. Then analogues of 
Lemmas 1 and 2 can be proved by slight modifications of the proofs given 
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there. Lemmas 3 and 4 hold with unchanged proofs. Lemma 5 has to be 
modified accordingly so as to contain the external contributions to the 
energy due to ~. Finally, Theorems 1 and 2 remain valid with unchanged 
proofs when we understand the free-energy functional to be given by our 
Eq. (3.26). I 

Remark. The free energy per particle of any weak limit point of the 
sequence {lt~N) IN = 1, 2,... } equals infe ~ ~ f(p). 

The subset J l ' = d /  is also a subset of J / / * c J r  meaning the 
stationary points of (3.26) on ~ .  Not  every member of ~/* minimizes f. 
For Q c Ja'* the first variation of (3.26) with respect to • ~ Jr' has to vanish. 
This variational principle gives 

exp{ -fl[~A p(r') U(tr - r'l, e) d3r ' + ~(r)]  } 
p(r) = ~A exp{ --fl[-~A p(r') U ( I r " -  r'l, e) d3r'+ ff(r")] } d3r " (3.27) 

for Q c rig* (cf. ref. 15). To find the global minimizers of f(p), knowledge 
on the type and number of solutions of (3.27) is of value. We come back 
to this point in the next section. 

Remark. Upon inserting (3.27) into the argument of the logarithm in 
the entropy term of (3.26), we can bring (3.26) into an alternative form 
that might be more useful in certain circumstances. The free-energy 
functional takes then the form 

97(p) = -(112) fA f .  p(r) p(r') U([r --r 'l ,  e) d3r d 3 r  ' 

(3.28/ 

The functional f ( p )  is bounded from below (for finite ~) by the same bound 
as is f (p) ;  hence, it takes on the same infimum value. Also, every stationary 
point of f (p)  on JCL is a stationary point of ~(p) and, by construction, ~ 
takes on the same value there as does f. It should be noted that, as distinct 
from the properties of f(p), the functional ~(p) is invariant against 
the addition of an arbitrary element ~ c K e r  v to p, with Kerv--- 
Ker( S g ( I r - r ' l ,  ~)(.)d3r'). This holds irrespective of whether p + ~  is a 
probability density or not. Consequently, if K e r v r  ~ ,  then all stationary 
"points" of (3.28) are degenerate. If in addition ~ a d3r-- 0 for a bounded 
element cr of Ker v, then for some t ~ N, p + to- is a global minimizer c JCL 
of j7 if p is a global minimizer that solves (3.27). Thus, for K e r v r  
(which we do not want to exclude here, for the sake of generality) it is not 
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possible to identify the thermodynamic equilibrium simply with the global 
minimizer(s) of f ,  since too many of them might exist. Thus, to determine 
the thermodynamic equilibrium state, Po say, from )7(p), one has to 
postulate that in addition to being a global minimizer of jT, Po has to solve 
(3.27). In this sense (3.26) and (3.28) are not equivalent functionals, since 
every global minimizer of (3.26) necessarily solves (3.27). 

We now have to show the following: As e ~ 0 ,  which means 
U---~ Ucl~-~ -m~  [ r - r ' l  -~, the free-energy functional given by (3.26) takes 
its infimum value if and only if par )  ~ 6(r - re), where p~ means a global 
minimizer o f f ( p )  for e r  We drop the subscript e at #, in the limit e=0 .  
We have then further to show that v(dQl#) is concentrated on those Dirac 
point measures with support in Y, with Y as defined below (3.2). We prove 
this by means of a sequence of proofs of partial results. 

It follows from the remark below (2.39) that f(p) is unbounded below 
if e = 0. Thus, to prove our assertion, we have first of all to show that when 
e is zero, f(p) goes to minus infinity along any sequence of C ~ probability 
densities which converge to a single-point Dirac measure. To keep the 
proof short, we shall postulate a mild growth condition for the probability 
densities such that the sequence is not completely arbitrary. 

Proo[. Let {C~(A)~ p~o)(r)ln=l,  2,...} be a sequence of positive 
C~ functions, normalized to 1, which converge to the Dirac point measure 
concentrated on roe A. Without loss of generality we assume that the 
support of p~o ) is a convex neighborhood of ro which is strictly contained 
in A. For simplicity let supp 0 ("+1) c c  supp o ~) ~ r o monotonically. Let r r o  r r 0  

be the Lebesgue measure of supp p~") and let 2l, denote the diameter of 
the smallest ball c A  containing supp p~"). Clearly, ~/r~< (4n/3)12. Then, 
from the normalizing condition ~ p d3r = 1 we obtain the inequality 

Ilp~n)ll ~/> 1 / ~  >/3/(4~rl, 3) (3.29) 

Equality holds for p(,)=pB as given by (2.31), (2.32), with s=l, .  In addi- 
tion and consistent with (3.29), we now postulate that there exist positive 
constants M~, and M z > 3 ,  independently of n such that p(') fulfills the 
growth restriction 

IIP(')II o~ ~ M1/I M2 (3.30) 

Consider now the case e = 0  for the free-energy functional (3.26), 
i.e., U =  U~. Since W was chosen to be Lipschitz continuous on A, ~ is 
bounded from above on A by some constant ~ § = sup, ~ A 0. (By construc- 
tion, s u p ~ A ~  A q/= +o% but ~k + is finite.) It is then readily verified that 

f(p(,))< _(1/2)m2l~1 +~b+ +fl-x ln(llp(n)ll ~) (3.31) 
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By means of (3.30) the right-hand side of (3.31) tends to minus infinity as 
n ~ co, which proves the claim. | 

Were the sequences which converge (weakly) to the single-point Dirac 
measure the only ones which lead to a diverging of f (p )  to minus infinity, 
we would have almost completed the proof of our assertion. There exist, 
however, other sequences which are not equivalent to the above one but 
which still result in a diverging of the free energy to minus infinity. For 
example, one might consider a sequence of probability densities which 
approaches the Dirac measure of a short, straight line in A. Then, for small 
enough temperature, and only then, the free energy becomes minus infinity 
as well. Thus, as next step we have to show that in a certain well-defined 
and reasonable sense the Dirac single-point measure gives a "more negative 
infinite value" of the free energy than does any other probability measure. 
We do this by showing that the amount  of negative gravitational energy 
lost by the system upon separating two pieces of matter located initially at 
the same point in space overcompensates the increase in /3 1 times the 
entropy. 

ProoL We compare the behavior of the free energy atong any of the 
above-introduced sequences of C ~ probability densities which converge to 
a single-point Dirac measure with that along a sequence of weighted 
linear superpositions of the same densities, now defined, however, on two 
different supports, and which converge, hence, to a superposition of two 
such point measures concentrated on different points. Let the sequences of 
normalized positive C~  functions { p ~ ) ] n =  1,2,...} be defined as above, 
with, however, ro replaced by r igA;  i =  1,2, 3. Choose three locations 
r l ,  r2 r  in A. We allow that rl coincides with one of the other two 
locations. We consider then 

A(~ m =-f(p~7 )) - f ( [ 1  - c~] p~') + c~p~3) ) (3.32) 

with e �9 ]0, 1 [ real, as n ~ oo. By construction, supp p~7) c c  A for all i. 
Then the following integrals contained in A (") are independent of the 
subscript i: 

w ( m - f , ~ f  A p~'/)(r)p~7)(r')Ucl(lr-r'],e)d3rd3r ' (3.33) 

and 

s (") - [ p~7)(r) In (") - p,~ (r) d3r (3.34) 
OA 
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These integrals diverge to minus infinity as n ~ ~ .  In addition, the 
following integral is finite as n -~ ~ :  

l~(n)~-- f A f A p~? ' ( r )p~3) ( r  ' )  Ucl ( l l*- - r ' l ,  e ) d 3 r  d3r ' (3.35) 

which is due to supp o(')c~ supp o ( ' ) = / ~  for large enough n, and also the r r  2 r r  3 
integrals 

q)~n) ~-- f A P~n}(r) ~ ( r )  dar (3 .36)  

are finite. Noting further that due to the compactness of A the entropy (per 
particle) functional -~plnpd3r  is bounded from above by Y/~/e, we 
obtain the estimate 

A(~')~<ct(1-~) w(')-fl ls(') +C (3.37) 

where C is finite and independent of n. Then, by an estimate that is essen- 
tially equivalent to (3.31), and noting again (3.30), we obtain A(~ ") h - o o  
as n ~ oo for a r 0, 1. In this sense, the single-point Dirac measure gives a 
"more negative infinite" free energy than does the weighted double-point 
Dirac measure. | 

The above proof means that separating self-gravitating matter takes 
free energy. Taking into account now the geometrical argument that any 
probability measure not concentrated on a single point means matter being 
separated, the above proof suffices to show that f(p) approaches its 
infimum for p(r) --'- 6(r - re) if e = O. 

The above proofs give no information of where to choose re, i.e., we have 
not gained any information about the decomposition measure v(dQ[ ~) [see 
(3.25)] from f(p). It is possible to establish by means of a kind of renor- 
malization technique that ~Y carries the minimizing support in the sense 
that v(dQt#) is concentrated on the Dirac point measures with support in 
~Y. In this sense, by essentially the same technique as used above, we now 
show that f(p) approaches a "more negative infinite value in the renor- 
malized sense" if the Dirac measure is concentrated on a point in ~ than 
it does if the Dirac measure is concentrated on any other point ~ A \ T. 

Proof. 
In this case 

Let a = 0  (equivalently, a =  1) in (3.32) and let r l e  ~Y, r2r ~Y. 

A(') - r~( ' ) -  ~o~') (3.38) O --W'I 
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by means of (3.33) and (3.34). Obviously, A(o n) is finite for all n, and by 
definition of Y we obtain 

lim A~o ~ < 0  (3.39) 

which was to be shown. | 

So far, we have shown that for e = 0  the free-energy functional f(p) 
approaches its infimum value - ~  for p(r ) -~  6 ( r -  re) and, upon using a 
kind of simple renormalization argument, we have shown that sense can be 
given to the statement that v(dQIlt) singles out those Dirac measures with 
rcc Y. The remaining step is to show that f(p) takes that infimum with 
6(r - re) as limit (as e "~ 0) of the global minimizers for ~ ~ 0. We do this by 
proving the following: For e=0 ,  the Dirac delta distribution 6 ( r - r c )  
solves (3.27) in the sense that it is a weak* limit point of (3.27) for any 
rccA. 

Proof. Let the sequence of normalized, positive C~  functions 
{p~7)[n = 1, 2,...} again be defined as in the proofs above. Set e = 0  in (3.27) 
and insert p~) for p. Consider the w*-limit of both the left- and the 
right-hand side of (3.27). The left-hand side converges (weakly) to 6 ( r -  r~), 
by construction. To facilitate the discussion of the right-hand side, we 
introduce the notation (p �9 U)(r), meaning the convolution product of p 
with U (see, for instance, ref. 24), such that (3.27) then reads 

e x p { - f l [ ( p .  U ) + ~ ] }  
P = SA exp{ -f l[(p �9 U) + ~b] } d3r (3.40) 

for all e. For p = p(n) and e = 0 we get 

(p~) * U~,) -* -m~ Jr-r~]-1 (3.41) 

strongly as n ~ ~ .  Thus, S exp{ _fl[(pr Ud) + ~] } d3r diverges to + oo 
with n ~ ~ .  On the other hand, since U~1(~) is C ~176 in the complement of 
the origin and ~k Lipschitz continuous, the right-hand side of (3.27) 
converges to zero pointwise with n for e = 0  and r #r~. The fact that 
normalization of the right-hand side of (3.27) or (3.40) is independent of n 
then guarantees the validity of the claim. | 

One might wonder that 6 ( r - r~ )  solves (3.27)for e = 0 independently 
of whether r~ is in Y or not. However, we must not overlook that in the 
proof that f(p) approaches its infimum for r~ ~ Y we employed a kind of 
renormalization technique that allowed us to speak of "more negative in- 
finite values of f in the renormalized sense." One should remember that this 
notion was introduced to obtain information on v(dQJ#). The counterpart 
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to this renormalization argument might be considered to be the following 
fact: For given sequence {p(n)}, the convergence of the right-hand side of 
(3.27) to the Dirac distribution is fastest for rc ~ Y, which can readily be 
proved. 

4. S Y S T E M S  WITH BOUNDED,  UNSTABLE PAIR 
INTERACTIONS 

In this section we would like to see how the results derived in the 
preceding two sections bear on the conclusions that can be drawn for 
the thermodynamic behavior of classical systems with only slightly 
smoothed-out gravitational interactions, i.e., e r 0 but still very small. Our 
final goal in this section will be to show the existence of a 
gravitational-type phase transition (for the spherical systems) at tem- 
peratures far above the critical value beyond which the stable isothermal 
Emden gas spheres cease to exist. 

For the systems that we are interested in here the exact evaluation of 
the configurational integral Q and, hence, of the configurational free energy 
F c~ in terms of closed expressions in fi, N, and :U, as is familiar from the 
statistical mechanics of ideal homogeneous systems (e.g., ref. 16), seems to 
be completely unfeasible, at least by present calculational techniques. In 
this situation the thermodynamic limit in the mean-field scaling (3.15) 
offers the possibility to investigate the canonical ensemble in a rather 
manageable way. 

An exact evaluation of this limit requires the solution of the nonlinear 
integral equation (3.27). Hence, some knowledge of the general solution 
properties of (3.27) is of value. [-That (3.27) always has a solution follows 
from the fact that f(p) takes its global minimum, (is) which exists and is 
finite for e ~ 0 . ]  Some attention was paid to this problem in ref. 15, where 
two uniqueness results were proved (depending on the assumptions made 
for the potential energy U) and an explicitly soluble one-dimensional model 
(cosine interaction) was discussed. This section here will center around a 
discussion of (3.27) with U ( l r -  r'l, e) being a gravitational-type interaction 
energy for three-dimensional systems. We point out that we do not 
specialize to spherical symmetry until Eq. (4.16). 

To facilitate the discussion, we assume that the external gravitational 
field ~b is identically zero, and we shall again set the wall energy W equal 
to zero in the calculations below. Hence, in the following, whenever we 
refer to (3.40) we understand that equation with ~ -= 0 without mentioning 
this explicitly, unless otherwise stated. 

We start with the discussion of the two extreme cases, i.e., the zero- 
and the infinite-temperature limits, meaning fl -~ ~ and fl -~ O, respectively. 
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Both limits can be evaluated exactly, and in both cases there exists a 
unique (up to, possibly, translation) globally minimizing equilibrium 
density p which solves (3.27) [equivalently, (3.40)]. We denote these limiting 
solutions of [(3.27), (3.40)] as l i m ~  0 p =P0 and l i m ~  ~ p =Po~. Then 

and 

with re ~ A arbitrary. 

Proof. By construction, 

p 0 = ~  1 (4.1) 

Poo -- 6(r - re) (4.2) 

- U ( ~ ,  e) is absolutely bounded and strictly 
positive for ~ ~< 4t. Thus, since p is a probability density, necessarily -f lU �9 
p ~ L+(A), meaning the equivalence classes of positive bounded functions. 
Obviously, then, 

lira e x p ( - / ~ p  * U)/f A e x p ( - / ~ p  * U)d3r= ~U -1 (4.3) 
B~O 

independently of the choice of p, which proves (4. I). 
On the other hand, noting that 

fA exp(--/~p * U)d3r= ] ]exp(-p * U)H~ (4.4) 

for/~ >~ 1, and postulating that p �9 U has a unique global minimum at ~, we 
can repeat the analogous steps as in the proof of (3.5c) [Eqs. (3.6)-(3.12)] 
and find for any such given p 

w*-lim exp ( - / / p  , B ~ o  U)/;~ e x p ( - / / p  �9 U) d3r=3(r-f)  (4.5) 

Now, 6~* U = U ( l r - ~ [ , e )  has a unique global minimum at ~, which 
follows from the proposed properties of U. Hence, we have ? = r c, such that 
in the limit //--* oe the Dirac distribution 6 ( r - r e )  solves (3.40) for any 
r c ~ A. This is also the only minimizing solution, up to translation, in the 
limit fl -~ 0% which follows from the fact that for T =  0 the free energy per 
particle is just the gravitational (potential) energy per particle, here for 
regularized interactions. It is readily shown that separating matter takes 
gravitational energy [the analogue to the proof that separating matter 
takes free energy, Eqs. (3.32)-(3.37)]. That way one finds that there is no 
other minimal point of f(p) for T---0. Hence the minimizing solution is 
unique up to translation inside A. This proves (4.2). | 
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Equations (4.1) and (4.2) are in accord with intuitive expectations. In 
the limit of infinite temperature the particle interactions become unimpor- 
tant and matter is distributed homogeneously over the domain A. At zero 
temperature matter is distributed such that the total potential energy due 
to U is minimal, which, in our case, implies that matter is concentrated on 
a single point in A. The location of that point is completely indeterminate, 
which means that the equilibrium measure is unique only up to translation 
inside A. The physical reason for this is that a completely collapsed system 
feels no influence of the confining walls, except when it hits them. 

There exists also a finite right neighborhood ~ = ]0,/~[ of fl = 0, with 
/~= 1/(2 ]1U[I o~), such that for f le  3 the solution of (3.40) is unique (ref. 15, 
Theorem 3). It is not known yet whether there exists an analogous and 
complementary regime fl .~ oo with a unique solution of (3.40), or whether 
such a regime can exist at all. 

To discuss the solution properties of (3.40) further, the following is of 
value: For 0 ~<fl< oo there is a one-to-one correspondence between the 
solutions p of the nonlinear integral equation (3.40) and the (positive) 
solutions ~ of 

~ =  t / ( -  U) �9 (e ~') (4.6) 

where t/~ E +. 

Proof. For every solution pair (fl, p) of (3.40) we define a unique 
generalized Newtonian potential ~ via ~ -  -flU. p, with ~eL+(A)(see 
above). That potential ~P must not be confused with ~. We derive an 
equation for ~ starting from (3.40). 

For finite fl the integral ~A exp(- - f lU* p)d3r exists, and therefore to 
every solution pair (fl, p) of (3.40) we can define a unique parameter 
tl(fl;p)=-fl/~Aexp(-flU.p)d3r, with t /<oo.  Upon taking now the 
convolution product of -flU with (3.40), and noting the definitions of 7 t 
and t/, we obtain (4.6). Hence, to every solution pair (fl, p) of (3.40) there 
corresponds uniquely a bounded positive solution pair (t/, 7 t) of (4.6). 

To prove the converse, we start with (4.6). Because of the boundedness 
properties of U, for finite t/ every solution of (4.6) is necessarily strictly 
positive and bounded. This follows from (4.6) together with the inequalities 

- U *  e~e~> [ U(r e)[[e'/'[I 1 > 0  (4.7a) 

and 

- U *  e~'~ [U(0, ~)] [[eV[[1 (4.7b) 

which hold pointwise in A. In fact, the assumption that [te~"[L1 would not 
exist for a solution ~ of (4.6) would mean, by (4.6) and (4.7a), that ~ is 
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pointwise infinite and thus no solution, which means a contradiction. 
Hence the integral SA e~" d3r exists for every solution of (4.6) pertaining to 
finite 7. By (4.7b) and (4.6), then, [I grit oo < oo. As a consequence, for every 
solution gs of (4.6) we can define a unique probability density p via 

p - - e ~ ' / f  A e ~" d3r (4.8) 

We would like (4.8) to solve (3.40) for a unique choice of ft. Upon compar- 
ing (4.8) with (3.40), we find that the density p defined by (4.8) then must 
also solve the integral equation T =  - f l U  * p, referred to as (I), given the 
same gt as in (4.8). Up to now we know nothing about fl except f l>0.  
Inserting now (4.8) for p into the right-hand side of (I), and noting that T 
solves (4.6), we see that p as given by (4.8) solves (I) iff we identify fl 
uniquely with fl(r/; gt) = 7 IA e~" d3r. Thereby we have shown that to every 
solution pair (7, gJ) of (4.6), with 7 finite, there corresponds uniquely a 
solution pair (fl, p) of (3.40). | 

Since we know that (3.40) has at least one bounded solution for every 
fl < o% in particular (4.1) for fl =0 ,  it follows that (4.6) must have a boun- 
ded solution at least for all q in a small right neighborhood of 7 = 0. We 
want to conclude, however, from the solution properties of (4.6) some of 
the solution properties of (3.40). In the following we list some important 
(for our aims) solution properties (SP) of (4.6). The linear integral 
operator ( - f l U  . .  ) will be abbreviated by K(-). 

SP1. There exists a positive constant 7" < oo such that (4.6) has no 
positive solution for q > 7 " ,  with the estimate 7"~< 1/ex. Here, ~c is the 
finite, positive spectral radius of K, and e is Euler's number. 

SP2. For 7 < 7" the problem (4.6) has at least one solution. In par- 
ticular, for every 7 < q* there exists a minimal solution ~ , .  The notion of 
"minimal solution" means t h a t " ,  is pointwise smaller than any other 
solution of (4.6) that belongs to the same 7. The minimal solution can be 
calculated by means of the iteration scheme 

~ ( .  + 1) = 7K(eV,(.)) (4.9a) 

with 

u(~ -= 0 (4.9b) 

being a strict subsolution of (4.6). [Recall that ~P is a subsolution if 
~P~<7K(ee), and a strict subsolution if strict inequality holds. Supersolu- 
tions ~ are defined analogously by reversing the ordering. ] The iterational 

822/55/1-2-16 
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sequence (4.9) converges monotonically increasing to ~(oo)= ~ , .  Iff 
lim, ~ , .  II ~,[I o0 < ~ then there exists also a solution ~'* for r/= r/*. 

SP3. For 0~< q < q *  the mapping q w. ~ ,  is pointwise strictly 
monotonically increasing and at least twice continuously right-differen- 
tiable with respect to r/. 

SP4. The minimal solutions ~ ,  for r /<q*  are locally stable in the 
sense of Amann, meaning that the eigenvalues of the linearized equilibrium 
operator J , ( .  ) -= id(. ) - qK(e r ) are positive for r/< ~/*. 

SP5. The solution ~'*, if it exists, is marginally stable [the linearized 
operator ~ . ( . )  has the eigenvalue zero] and there exists a small left 
neighborhood of r/* such that (4.6) has at least two distinct solutions in the 
neighborhood of the pair (t/*, ~*). In the corresponding bifurcation 
diagram the solution branch containing (q*, ~*)  bends back at 0/*, ~*)  
with respect to r/. 

ProoL SPI: K has a strictly positive integral kernel - U ( I r - r ' l ,  e) 
defined on A x A. Then the Krein Rutman theorem (27) guarantees that tr is 
the largest eigenvalue of K, and further that the corresponding eigenspace 
has dimension one with a nonzero eigenfunction u~ (a simple proof of the 
second statement pertaining to the situation given here is given in ref. 28, 
Theorem 3.3.2). This then allows us either to apply the same technique as 
introduced in ref. 29 to prove the existence of q* (ref. 29, Theorem 1) for 
- A  ~ =  t/e ~', together with the above given bound, or equivalently, ref. 30, 
Proposition 20.2, applies, giving the same result. SP2: The proof is given in 
ref. 31, Proposition 3.1. SP3: The proof is given in ref. 30, Theorem 26.3. 
SP4 and SP5: The proof is again due to ref. 31, Proposition 3.1. | 

Equation (4.6) belongs to the large class of extensively studied non- 
linear fixed-point problems in ordered Banach spaces. For a detailed survey 
over more general results see, for instance, ref. 30. 

So far we have no lower bound for r/*. The following helps in inferring 
such a bound if the solution properties of a suitable comparison problem 
are known. 

SP6. Let /~(-) be a compact, symmetrical, linear integral operator 
with strictly positive integral kernel /~(., .): A x A ~ R +. Clearly, the 
analogues of SP1-SP5 apply also to the equation 

= (/~(e~) - ( fA K(r, r') exp[~( r ' ) ]  d3r ' (4.10) 

Let K >  - U  pointwise on A • A. Then to every solution ~ of (4.10) there 
exists a solution ~ of (4.6) with ( =  r/. 
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Since / (>  - U  by assumption, for ~_c a solution of (4.10) we 

~b~ = ~[((e ~) > ~K(e ~) (4.11) 

Hence, q5r is a strict supersolution of (4.6) for r/-- ~. Taking q5r as starting 
solution for the iterational scheme (4.9a) gives a monotonically decreasing 
sequence, which necessarily must converge since (4.9b) is a strict sub- 
solution which is smaller than ~bc. | 

,Clearly, by the above-proved equivalence of (3.40) and (4.6), to every 
minimal solution ~,  of (4.6) there belongs a unique solution fi~(,) of (3.40), 
given by 

tie(,) =eq%/~ A eq" d3r (4.12a) 

with the corresponding inverse temperature fl(t/) given by 

fl(q) = q ~ e q% d3r 
aA 

(4.12b) 

The solutions fi belong to a class of solutions of (3.40) which we shall call 
(suggestively) "shallow solutions." The reason for that will become clear 
below. 

Some of the more important properties (P) of the shallow solutions as 
defined by (4.12) are as follows. 

P1. For 0~<~/<r/* the mapping r/~--~(,), given by (4.12a), is at 
least twice continuously right-differentiable w.r.t. 7. 

P2. For 0 ~< q < ~/* the mapping q ~ fl(q), given by (4.12b), is at least 
twice continuously right-differentiable with respect to q and strictly 
monotonically increasing. We have fl(0)= 0. 

P3. In the parameter regime of fl values, starting with 0, where the 
shallow solutions as defined by (4.12) exist, the mapping fl w-~ ~ is at least 
twice continuously right-differentiable w.r.t, ft. 

P4. There exists f l ~ S w  {fl} such that for f l<fl  the solutions p of 
(3.40) in the uniqueness regime f l e e  are given by (4.12). Equivalently, 
there exists O ~< ~/* such that for q < ~ the minimal solutions ~,  correspond 
uniquely to solutions t~l,) of (3.40) with fl(q)e Z. In particular, fl= fi(q). 
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ProoL Property P1 follows from (4.12a) and SP3. Property P2 
follows from (4.12b) and SP3. Property P3 is a direct consequence of P1 
and P2. Finally, P4 follows from P2, P3, SP2, and SP3. I 

The following property of the shallow solutions as defined by (4.12) 
makes them of interest for the statistical mechanics equilibrium problem: 
The solutions given by (4.12) are locally stable, i.e., they are local 
minimizers of the free-energy functional f(p). 

ProoL Let p be a solution of (3.40) and denote by G a small (boun- 
ded) perturbation of the equilibrium density p. Clearly, in order that p + a 
is a probability density, a has to fulfill SA a d3r = 0. Nevertheless, we shall 
not need this property of a to prove our claim. We take f(p) and consider 
the second variation (62f)p (a). It reads 

(62f)o(a)=(1/2)(a, U , a ) + ( 1 / 2 ) f l - l ( p - l , a  2) (4.13) 

In (4.13), the angular brackets denote the canonical L 2 scalar product. It 
is readily shown that (62f)p (a) is absolutely bounded as 1(,~2f)o (a)l < 
C,~,~ Ilcrll~, where C~,a is a constant depending on U and /L Hence, for a 
suitably normalized, inf 62fexists, and to prove the claim it suffices to show 
that this infimum is positive for p = ~, as given by (4.12). We choose 
(1/2) IIcrp 1/211~=1 as normalization. Then the minimizing a of (4.13) 
solves the Euler-Lagrange equation 

U* a + t3-ip-Ia =chp-la (4.14) 

where e5 is the smallest eigenvalue of the operator defined by the left-hand 
side of (4.14). Now it follows from (4.13) or (4.14) that for a e K e r ( U ,  .) 
the second variation (62f) o (0) of (3.26) is strictly positive for any given p. 
Thus, we can restrict the further considerations to the case a e 
(Ker(U,- ) ) •  where the orthogonality is meant with respect to L 2 scalar 
product. We now multiply (4.14) by tip and take the convolution product 
of (4.14) with U. This gives 

(4.15) 

Now noting the definition of ~ ( - )  given in SP4 with p a shallow solution 
given by (4.12), we see that (4.15) is just the eigenvalue problem for 
~ ( U *  o-). The eigenvalues of ~ ( - )  are positive by SP4, for p a shallow 
solution given by (4.12). This proves the claim. ] 

By P4, for q < 0 the iterational sequence (4.9) converges to the ther- 
modynamic equilibrium state, which belongs to the uniqueness regime 
fie Z. Clearly, if 0 = t/*, then the iteration method (4.9) does not generate 
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solutions that cannot be computed (equally well) by iterating directly 
(3.40). If, however, 0 < q* or even ~ ~ t/*, then (4.9)generates locally stable 
solutions of (3.40) that cannot necessarily be calculated by means of an 
iteration scheme that uses directly the operator defined by the right-hand 
side of (3.40). If the latter is the case, then possibly (4.9) generates ther- 
modynamically metastable states which are not identical with the ther- 
modynamic equilibrium state, in the sense that ~ does not correspond to 
the global minimum of either f (p)  or ~(p) for ~ > ~ 

So far we have not made any symmetry assumptions. For the further 
discussion we turn now to the more concrete situation of systems confined 
to a hollow sphere of radius 1 and center at the origin. For the above 
investigations it was also not necessary to specify e except that e #0 .  
We wish now to inquire into the thermodynamic behavior of systems 
which are nearly purely gravitating over the typical distances provided by 
the confining sphere. This means that we study here explicitly systems for 
which the interparticle distances where the modifications to the Newtonian 
potential become important are several orders of magnitude smaller than 1. 
This will sharply restrict the possible values of e (see below). To simplify 
the discussion, we assume that U(~, e) > Ucl(~) for all nonnegative ~. [The 
explicit examples in (3.14) fulfill this requirement.] In addition, we set 
m0 = 1 [see (2.4) and (3.15)]. 

For spherical domains it has been shown ~176 that in the exactly self- 
gravitating case, i.e., U =  Uo~, all local minimizers of the relevant 
free-energy functional are necessarily spherically symmetric, and that then 
the density decreases monotonically outward from the center (see also ref. 8 
and ref. 21, Appendix A). Since the only feature of Ucl that is used in that 
proof is the fact that Uol is purely attractive, which holds also for U with 

~0 ,  we can conclude that for e # 0  the local minimizers of (3.26) in a 
hollow sphere are likewise spherically symmetric and radially decreasing 
outward. Therefore, in what follows, we consider only densities p which 
possess these properties. 

For the spherical systems we can state an important existence theorem 
for solutions of (4.6): To every solution 4~ of 

q5 = ~r -1 . e e (4.16) 

defined in the unit sphere B1 centered around the origin, with r = Irl, there 
belongs a minimal solution ~ ,  of (4.6), with q = ~, which is also pointwise 
smaller than any solution q~: for the given ~. 

Proof. We have postulated above that U(~, e )>  Uc~(~) for all ~ e 11~ +. 
The claim follows from SP6. II 
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Equation (4.16) is (the integral version of) the well-known Emden 
equation of the isothermal gas spheres, (H'12) sometimes also called the 
isothermal Lane-Emden equation. (15) 

Remark I. In the limit e = 0, (4.6) goes over into (4.16). Thus, all the 
bounded spherical solutions of (3.40) are then necessarily generated by 
solutions of (4.16), i.e., isothermal gas spheres, with (4.18) (see below) as 
limiting case. Nevertheless, in this limit, (3.40) and (4.6) (treating r/ as 
given constant) are not equivalent, because (3.40) has the Dirac measure as 
additional weak solution for every/L 

Remark 2. For the systems with spherical symmetry, (4.16) is 
equivalent to the elliptic boundary value problem of second order 

- A u = 2 e "  (4.17a) 

in B~, with 

u = 0  (4.17b) 

on OB1, and 2~ ~+, which is known in the mathematical literature as 
Gelfand's problem/3~ For instance, from a solution pair (~, ~b~) of 
(4.16) one obtains the corresponding solution pair (2(if), u).~r of (4.17) via 
u~.(~)(r) = q~(r) - 05~(1) and 2(~) = 4rc~ exp[-q~(1)]. 

Clearly, by the analogue of SPI there exists a positive constant ~* 
such that (4.16) has no solution for ~> ~*. On the other hand, for ~= 
1/(2roe2) - ~ z ,  (4.16) admits the elementary solution 

q~z = 2(1 - in r) (4.18) 

known as Z611ner's solution. (H'12) This implies, by noting SP2 and SP6, 
that in the spherically symmetric situation discussed here the existence of 
minimal solutions ~ ,  of (4.6) is guaranteed for r/values at least up to ~z. 
That means we have ~z as lower bound for r/*, 

q*/> 1/(2~e 2) (4.19) 

[-It should be clear that the minimal solution of (4.6) that belongs to 
t/= ~z, which exists by SP6, need have nothing to do with (4.18).] We are 
now able to give an explicit, rather weak, lower bound/3, for the existence 
of shallow solutions of (3.40) in the unit sphere: 

/~. = 2/(3e 2) (4.20) 

There exist locally stable shallow solutions of (3.40) with spherical sym- 
metry at least up to values of/~ somewhat larger than/3, given by (4.20). 
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Proof. As an immediate consequence of P2 and (4.19) we have/3(qz), 
defined via (4.12b), as lower bound for the existence of shallow solutions 
of (3.40) in the unit sphere. Making use of the fact that the solutions of 
(4.6) are positive, we replace ~ ,  in (4.12b) by 0 and obtain /3(r/z)>/3, 
strictly. | 

The interesting point now is that (4.20) is roughly 0.1 and independent 
of e, whereas the bound /~= 1/(2 [U(0, e)]) that guarantees <~5] the unique- 
ness of p for /3</~ (see above) is proportional to e. In fact, /~= 
e/[2lU(O, 1)[] by (2.6). [As an example, consider U to be given by (3.14) 
with mo= 1--see Eq. (3.15b). Then I U(0, e)l = 1/e for all n. Thus, /~= 5/2, 
then. ] Now e is here a direct measure of the distance over which the New- 
tonian interactions are modified, which we have postulated to be very small 
as compared to the attainable particle separations, which are of order 1 
here. Consequently, we have e ~ 1 by several orders of magnitude, and/~ 
and /3. become well separated. More precisely, given U(~, e), we have to 
choose e ~ l  so small that 5/[2 [U(0, 1 ) l ] ~ P . .  Thus, there exist then 
shallow solutions fi~, given by (4.12), with /3r S, meaning fl=/~ (see P4). 
This opens the possibility that for some interval of/3 values, with /3 >/~, 
there are locally stable shallow solutions which nevertheless do not 
describe the thermodynamic equilibrium state. Our next argument shows 
that this is the case. 

We know from the preceding two sections that as e ~ 0 the statistical 
mechanics equilibrium state converges to the material point. In particular, 
we know that for any given finite/3 the free-energy functional f(p) as given 
by (3.26) can be made smaller than any prescribed negative value by 
decreasing e to smaller but still finite values, which is a direct consequence 
of the analogue of inequality (2.33) for (3.26). Consequently, for ~ finite but 
small, for small enough temperatures there will exist highly peaked but 
nevertheless positive (everywhere in A) equilibrium densities as thermo- 
dynamic equilibrium states, which may be termed to be of "core-atmosphere 
type." We shall use this notion rather suggestively without precise definition; 
however, one might think of a smeared-out approximation (eL~+) of the 
delta distribution. Note that at zero temperature the equilibrium state is 
again the material point. We estimate how small such a "small enough" 
temperature has to be. 

We approximate a distribution with core-atmosphere structure by the 
box distribution [(2.31), (2.32), (2.34)]. Here, an obviously reasonable 
choice for So [-see (2.34)] is So = 1. Since ~ ,~ 1, the box distribution is highly 
peaked and concentrated on a very small sphere inside A. Then, in analogy 
to (2.33), we have 

inff(p)<~e-l(1/2) U(2, 1)-3/3 -~ In e - / 3  -1 ln(4~/3) (4.21) 
P 
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On the other hand, for 0 < t /< if* the free energy of the shallow solutions 
pertaining to 30l) is bounded below independently of e. We find 

f(/~r = j7(r > _fl  1 In fA e~" d3r 

> --3 l ln  fa e ~ d 3 r >  _fl-i  In fA e~'* d3r (4.22) 

with ~r the minimal solution of (4,16) for ~ = r/, and ~*  the minimal solu- 
tion of (4.16) for ~ = ~*. 

ProoL First of all, ~r and @* exist ~11'12'3~ and are bounded by the 
analogues of SP2 and SP3. The equality in (4.22) is a consequence of the 
remark stated below (3.27). The first inequality uses the lemma stated with 
(4.6), but is otherwise trivial. The second inequality follows from SP6 and 
its proof, together with the fact that - U ( r  e )<  ~ 1 pointwise, which was 
postulated at the beginning of the discussion of the spherical systems. The 
last inequality is a consequence of: (1)the analogue of SP3, which, of 
course, holds also for (4.16), and (2)the above-mentioned fact that ~* 
exists and is bounded. | 

Remark. The last inequality in (4.22) shows that it is not necessary 
to know the value of t/which generates fl(q). Rather, (4.22) tells us that the 
free energy of the shallow solutions, interpreted as a function of fl, is boun- 
ded below as (f(tS))(fl)> -fl-lC, where C is a positive constant which is 
independent of fl and e. One should note that the bound (4.22) is not 
uniform over the interval [0, fl((*)]. 

With the aid of some elementary algebra it is now readily shown that 
the right-hand side of (4.21), and thus inff(p) ,  is smaller than the 
right-hand side of (4.22), and thus smaller than f(~p), i f / />/~,  with 

/~ = c1 [~ In ~1 + c2e (4.23a) 

The positive constants cl and c2 are given by 

and 

cl = 6/1U(2, 1)1 (4.23b) 

Clearly, we have fl "~ 0 with e ",~ 0, with the leading order in e of/~ being 
O([zlnel),  as e approaches zero from above. Obviously, we can choose 
e ~ 1 so small that/~ ~/~ , ,  which we require to be the case from now on. 
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Recall that fl ,  is a lower bound for the existence of shallow solutions. 
Thus we have verified our above expectation: For small enough e there 
exists a temperature regime f i - l>T>f l ,1  where there exist shallow 
solutions (4.12); however, inff(p)<f(pt~) in that regime such that the 
thermodynamic equilibrium state is then not given by a shallow solution. 

Let us pull things together. The shallow solutions given by (4.12) form 
an at least twice continuously differentiable sequence w.r.t, fl inside their 
existence regime (see P3). Therefore, the free energy f ( ~ )  of the shallow 
solutions is also at least twice continuously differentiable w.r.t, fl in that 
regime of fl values. The existence regime of the shallow solutions extends 
beyond fi , ,  (4.20). For fl</~, with fi<fi,,  the shallow solutions are 
the (then) unique thermodynamic equilibrium states, which means 
in f f (p )=f (~)  for fl</~. On the other hand, for fl values lying in the 
interval ]/~, fl((*)[, with /~</~ < fl, < fl((*), we have shown [inequalities 
(4.21) and (4.22)] that in f f (p )  is smaller than f ( ~ ) .  This then implies the 
existence of a flt~ with fl<~ fltr ~ fl, meaning O(e) ~< flt~ ~< O([e In ~l) as e N 0, 
where the thermodynamic equilibrium state changes somehow discon- 
tinuously from the solution branch of the shallow solutions to another 
solution branch of (3.40) which carries most likely solutions of 
core-atmosphere type. Note that a continuous change of the equilibrium 
density p at fltr is impossible because the shallow solutions are locally 
stable (proof given above), which forbids a bifurcation at fl~. We shall 
prove below that in f f (p )  is continuous at flt~. All these facts together then 
imply the existence of at least two distinct solutions of (3.40) at fl~r, both 
globally minimizing f(p). This means the existence of a gravitational-type 
phase transition at flt~. We also prove that the derivative of in f f (p )  w.r.t. 
fl is discontinuous at flt~ provided in f f (p)  is differentiable in a finite right 
neighborhood of flt~. In this sense the phase transition is of first order. 

Proof. (a) [Continuity of inf f (p) . ]  For fl < fltr the infimum of f is 
given by f(Pt~). Assume that at fl = fit, the infimum changes discontinuously 
with a finite jump A s to f(Pc), where Pc denotes the new thermodynamic 
equilibrium at fl =fltr. Clearly, Pc must solve (3.40) and is therefore strictly 
positive and bounded. Hence, for fixed p - Pc the mapping fl ~ (f(Pc))(fl) 
is arbitrarily differentiable w.r.t, fl ~ 0, which implies that at least in a small 
left neighborhood of fltr we have (f(pc))(fl)<f(fi~)=inff(p), which is a 
contradiction. Thus, in f f (p )  is continuous. 

(b) [Discontinuity of O(inff(p))/~fl.] Let fi=flt,.. Then there exist 
several distinct solutions of (3.40) with the same value of inff.  It suffices 
to consider the case where there are exactly two distinct solutions, denoted 
by Pl and P2, where p l = ~ t r .  Write f(p) as f(p)=e(p)-fl-ls(p),  where 
e(p) is the potential energy per particle and s(p) is the entropy per particle. 
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Assume that e(pl)= e(p2). Then also s (p l )=  s(p2). That implies that there 
exists an incompressible mapping pl ~ P2- (Note that entropy is conserved 
for incompressible mappings.) As has been shown in ref. 10 (see also refs. 8 
and 21), any given Po can be mapped incompressibly to a unique spherical 
minimizer PM of e(p) with S(po)= S(pM). By construction both Pl and P2 
minimize e(p) under conservation of entropy; hence, p~ - P2, in contradic- 
tion to the assumption that the densities are not identical. As a conse- 
quence, we must have e(p~)~ e(p2). Now note that from the finite-N theory 
it follows that e(pr)= a(fl inff(p))/Sfl, wherever the derivative exists, and 
where P T means the thermodynamic equilibrium. With the mild assump- 
tion that the derivative of in f f (p)  exists in a finite right neighborhood of 
fltr our finding e(pl)~ e(p2) implies that ~(inff(p))/Sfl jumps at fl =fltr. | 

Thus, we proved the existence of a first-order gravitational-type phase 
transition at fl = f i t ,  where /~tr fulfills O(e) ~< fltr ~< O([e In a[) as e h 0. More 
precisely, fl~< fltr ~< fi ~ fl.  for small enough e. This means that fltr is located 
well inside the parameter regime of the locally stable shallow solutions, 
which by SP6 also means well inside the parameter regime of fl values 
where there exist locally stable isothermal Emden gas spheres. 

Remark. The notion of "gravitational-type phase transition" refers to 
the fact that the systems considered here have only slightly smoothed-out 
gravitational interactions. It should be noted that, although we have 
proven rigorously the existence of a phase transition, we have not 
rigorously shown that then f(p) actually takes its infimum for p a density 
of core-atmosphere type. However, the fact that the global minimizer of 
f(p) converges to the delta distribution as e ~ 0 provides a good reason to 
conjecture that the global minimizer for fl > fltr will be of core-atmosphere 
type. Clearly, for temperatures near absolute zero f(p) will take its 
infimum for p a density of core-atmosphere type. 

We would like to go a little farther and complete, to some extent, our 
knowledge of the solution properties of (3.40). Since U converges pointwise 
to U~I, for e .~ 1 to every solution of (4.16) which varies on a scale much 
larger than e (but only then) there will correspond a solution of (4.6) which 
is only slightly deformed as compared to the former one. Hence, the bifur- 
cation diagram of (4.6) will look qualitatively similar to that of (4.16), as 
long as the solutions are flat enough. The corresponding solutions of (3.40) 
computed from (4.6) will thus be very similar to their pendants for e = 0, 
which are to be computed from (4.16). In addition, for temperatures not 
too high there will exist the solutions of core-atmosphere type, which in the 
limit e = 0 go over into the Dirac point measure as weak solution of (3.40), 
which is then the only thermodynamic equilibrium state indeed. If in 
addition we make use of numerical results that have been obtained for the 
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Fig. 1. Qualitative sketch of the bifurcation diagram of Eq. (3.40), showing the uniform 
norm of the equilibrium solutions p against the inverse temperature ft. The lower branch 
represents the shallow solutions, which are locally stable, slightly inhomogeneous, 
self-gravitating gases. For  fl ~</l they are the only solutions of (3.40), and for fl <fltr the 
thermodynamic equilibrium state is a shallow solution. For fl ~< fi* they are given by (4.12). 
They cease to exist for f l>f l**.  The upper branch contains the solutions which carry the 
thermodynamic equilibrium for fl >fltr. They are most likely of core-atmosphere type. In the 
shaded regions the structure of the bifurcation diagram is largely unknown. 

solutions of [(4.16), (4.17)] (see, for instance, refs. 11, 12, and 33), we can 
draw a qualitative sketch of the bifurcation diagram of (3.40) as shown in 
Fig. 1. (It should be noted that the existence of the gravitational-type phase 
transition has been shown by purely analytical techniques.) The whole class 
of the shallow solutions will now be defined as the solutions on the lowest 
branch, which exists for fl values in the range 0 ~< fi ~< fl**,~ 3. The shallow 
solutions are locally stable and sharply bounded in norm, and connect 
differentiably to the homogeneous infinite-temperature state. We remark 
that from the local stability of the shallow solutions together with fact that 
in f f (p)  is smaller than the free energy of the shallow solutions for fl > fltr 
there should follow the existence of at least one further (unstable) solution 
of (3.40) for fltr<fl<fl**, to be proved by means of a mountain-pass 
lemma. 

5. S U M M A R Y  A N D  OUTLOOK 

In the preceding sections we have shown that, in the weak sense 
defined in the introduction, it is meaningful to speak of a thermodynamic 
equilibrium state, in the canonical ensemble, of classical self-gravitating 



250 Kiessling 

matter in three spatial dimensions confined to a finite container. We have 
explicitly constructed the exact canonical equilibrium measure on the 
configurational space of the particles. This has been achieved by first 
considering systems with smoothed-out gravitational potential and then 
taking the weak* limit of the exact Newtonian potential. The limiting 
measure is a linear superposition of single-point Dirac measures, meaning 
that every member system of the canonical ensemble is in the completely 
collapsed state, i.e., a single material point. This result holds both for finite 
systems (Section 2) and in the thermodynamic mean-field limit (Section 3). 

We have also briefly discussed the analogous problem in two-dimen- 
sional physical space, and we have shown the existence of two 
well-separated temperature regimes. For very high temperatures the 
canonical equilibrium measure on the configurational space of the particles 
is absolutely continuous with respect to Lebesgue measure, and for very 
low temperatures we obtain again a superposition of single-point Dirac 
measures, describing the completely collapsed state. It is an open question 
whether in the intermediate-temperature regime the ensemble consists of 
completely collapsed systems or not. Here and below, "high" and "low tem- 
perature" are always meant with respect to a typical temperature charac- 
teristic of the system [see text pertaining to (2.66), and also text 
above (4.6)]. 

That shows that, in a sense, it is problematic to state that there cannot 
exist a thermodynamic equilibrium state for classical self-gravitating 
matter, as is commonly the case in the literature (cf. the discussion in the 
introduction). Rather, based on the results obtained in this paper it is 
proposed here to allow for a broader class of thermodynamic equilibrium 
states than is discussed usually, and to allow, generally speaking, also 
probability measures on the phase space that can be obtained as the weak 
limit of a sequence of usual thermodynamic equilibrium states, provided 
they behave reasonably in the limit N ~ ov (see the discussion in the intro- 
duction). To discriminate between the usual equilibrium states and those 
which exist only in the weak closure it is proposed further to introduce the 
more refined distinction between strong and weak thermodynamic equi- 
librium, depending on whether the corresponding thermodynamic potential 
pertaining to the measure exists or not, respectively. In this sense, classical 
self-gravitating matter has a weak thermodynamic equilibrium state but no 
strong one. 

In Section 4 we have investigated the thermodynamic mean-field limit 
for the related but physically more realistic problem of systems with 
smoothed-out gravitational interactions. These systems can be considered 
as a classical approximation to gravitating fermionic systems, in the sense 
that by cutting out the singularity of the Newtonian interaction potential 
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the stabilizing quantum effects are mimicked. However, the classical "par- 
ticles" can also be considered as cosmic objects, stars in a galaxy, for 
instance, the modification of the Newtonian interactions extending then 
over the size of a star. We inquired into the solution properties of the 
isothermal mean-field equation (3.40) as derived rigorously in ref. 15. 
Employing methods developed for nonlinear fixed-point problems in 
ordered Banach spaces, (3~ we presented a constructive technique which 
allows us to compute solutions of (3.40) in arbitrary simply connected 
domains A. We proved that all the solutions computed by that technique 
are at least locally stable, meaning at least thermodynamically metastable, 
and that they belong to the parameter regime of moderately high tem- 
peratures up to infinity, connecting differentiably to a uniqueness regime 
existing (15) for high temperatures. Specializing to spherical systems, we 
have rigorously shown that a first-order phase transition will occur at tem- 
peratures located well inside the existence regime of the well-known 
isothermal Emden gas spheres, and we have presented strong evidence that 
the phase transition connects a slightly inhomogeneous gas phase and a 
phase consisting of a highly condensed core and a dilute atmosphere. The 
results of Section 4 can be viewed as classical counterparts of the ther- 
modynamic Thomas Fermi limit for gravitating fermions in the canonical 
ensemble, where the existence of a quantum mechanical gravitational phase 
transition was found numerically in ref. 34, an analytical proof of which 
was given in refs. 35 and 36. 

The existence of a gravitational-type phase transition in the classical 
canonical ensemble has been proposed in previous work. (8'14~ However, it 
seems that so far in all the work that addressed the problem to determine 
explicitly the critical temperature where the phase transition will occur as 
compared to the existence regime of the Emden isothermal gas spheres 
(ref. 14 did not address that problem), the critical temperature was iden- 
tified with 1//~** (Fig. 1), the analysis being based either on a discussion of 
the solution curve of Eq. (4.16) (8) and/or on the concept of local 
stability. (4'9'22) Both these concepts, however, cannot give the final answer 
to the question of what is the thermodynamic equilibrium state, since (1) 
Eq. (4.16) does not contain all the relevant solutions for the problem, as 
shown in Sections 3 and 4, and (2) a local stability analysis alone gives no 
information on global stability, which is the relevant concept for the 
statistical mechanics equilibrium state in the first place (e.g., ref. 15). In 
fact, as follows from the analysis of Section 4, the locally stable isothermal 
gas spheres, or their equivalents, are generally not the global minimizers 
of the relevant free-energy functional. The critical /~tr at which the phase 
transition occurs obeys O(e) ~< fltr ~< O([e In el ), with e ,~ 1 by several orders 
of magnitude for the nearly-Newtonian gravitational interactions. So 
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Btr~ l, whereas B**,~3 (e.g., ref. 33). Thus, the actual point of phase 
transition differs extremely from B** 

In the cited references (4'8'9'22) the identification of the transition tem- 
perature with l/B** is considered to be exact in the mean-field limit; 
possible deviations from that result are attributed to correlation effects that 
come in from finite-N corrections (see especially the corresponding discus- 
sions in refs. 4, 8, and9).  The proof that Btr~B** (Section4) uses, 
however, the mean-field limit. Thus, what has actually been determined in 
refs. 4, 8, 9, and 22 is a temperature regime where thermodynamically 
metastable self-gravitating equilibria exist, together with the critical point 
I/B** beyond which they cease to exist. Those metastable states might also 
play an important role, of course, reminiscent of a supercooled state of the 
van der Waals gas, 

There are several remaining important questions directly related to the 
problems treated here which deserve a resolution. Here we comment at 
least briefly on some of them. A rigorous treatment of these problems has 
to come from future work. 

I. We have investigated only the canonical ensemble. It is an interest- 
ing question how the microcanonical measure will look. Concerning the 
limit e ~ 0, since energy has to be conserved, it seems unlikely that the 
projected microcanonical measure on the configurational space for an 
isolated finite ( N <  ~ )  system will converge exactly to the same limit (1.1) 
as does the projected canonical measure. One of the basic ingredients that 
allows the complete collapse to occur in the canonical ensemble is the 
possibility to give up an infinite amount of energy to the surrounding 
world, which is not possible in the microcanonical ensemble. So there must 
be some doubt about the equivalence of the ensembles, even for e :~ O. In 
the quantum mechanical situation it is known ~37) that the various 
ensembles are not equivalent. Of course, our reasoning cannot replace 
rigorous considerations. 

II. Concerning the systems with smoothed-out interactions, it is of 
interest to know whether the phase transition in the canonical ensemble 
bridges a region of negative specific heat in the microcanonical ensemble, 
which has been found to be the case in the quantum mechanical situa- 
tion. ~34) Clearly, the quantum mechanical results suggest that this will be 
true also in the classical case. There is some further evidence from exactly 
soluble approximate problems ~14'38'39) which show some of the charac- 
teristic features expected for realistic classical self-gravitating matter, 
especially a gravitational-like phase transition in the canonical ensemble 
which is associated with a region of negative specific heat in the micro- 
canonical ensemble. So one might indeed expect that feature to occur also 
for the exact classical problem with regularized Newtonian interactions. 
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At this point we mention explicitly the model of ref. 39. These authors 
discussed N point particles moving independently of one another on the 
surface of a sphere of variable radius. The spherical surface itself is confined 
between two concentric spherical walls of radii r0 and re ~ ro, and is subject 
to a central - r - 1  potential, the coupling strength being proportional to 
the square of the total mass of the combined system particles + spherical 
surface. That model is exactly soluble in both microcanonical and canoni- 
cal ensemble, for both classical and quantum mechanical situations. It is 
perhaps worth noting that in that model the critical temperature/~1 for 
the phase transition in the classical canonical ensemble is given by /Jr= 
O([(ro/re) In(to~re)l) to the leading order in ro/r e. That is in remarkable 
agreement with our estimate for Btr for the exact problem of classical 
particles with regularized interactions. 

III. Again concerning the systems with smoothed-out interactions, it 
is of interest to know also the deviation of the finite-N results from the 
results obtained from the mean-field limit, at least the correction to the 
mean-field limit result in the leading power of N. To get an idea of this, 
consider inequality (2.26) for F(#) given by (2.30). Instead of taking the 
box distribution (2.31) at will, we might rather seek the global minimum 
of (2.30) with respect to p. The free-energy functional (2.30), evaluated at 
its global minimum, is just the mean-field approximation to the exact free 
energy; equivalently, it is the finite-N pendant to the mean-field limit 
expression (3.26). The global minimum exists as a consequence of the work 
presented in ref. 15. As a necessary condition the minimizing p has to solve 
the Euler-Lagrange equation 

exp{ --/?[~A p(r')(N-- 1) V([r - r'[, s) d3r '+ m~b(r)] } 
p(r) = SA exp{ --B[fA p ( r ' ) (N - -  1) V(lr" - r'[, e) d3r ' + mq~(r")] } d3r " (5.1) 

In the case where the external gravitational potential vanishes, comparing 
(5.1) with (3.27) and noting the mean-field scaling (3.15a) reveals that the 
best approximation of F ~176 from above by Y(p)  is given for p a measure 
obtained from the mean-field limit, for a limit temperature that deviates by 
terms of order N-1 from the temperature of the finite system. Precisely, 
B( 1 - N  -1) = Boo, where Boo denotes the inverse temperature that has to be 
chosen for the mean-field limit. So far we do not know how good this "best 
approximation of F c~ from above" actually is. According to ref. 4, the 
leading corrections are in fact ~ N  -1, that result being obtained from a 
formal series expansion around the mean-field equilibrium state, which was 
evaluated up to second order. 

In refs. 4 and 22 an equivalent version of (5.1) has been derived by 
means of a different method based on an application of Jensen's inequality. 
Because of the similarity of (5.1), in the spherical case, with the Emden gas 
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sphere equation these authors conjectured that an Emden isothermal gas 
sphere will give the best mean-field approximation to the exact equilibria, 
which is generally not the case, as shown in Sections 3 and 4 of the present 
paper. The formal series expansion method mentioned above is not based, 
however, on the prescription of any special solution of (5.1). 

It should be noted, however, that even if the leading corrections to the 
mean-field results are ~ N 1, the actual deviations of the finite-N results 
need not be small in the neighborhood of the phase transition. It should be 
noted further that the fine details of the collapsed phase must not be taken 
too seriously, even if the deviations of the finite systems from the 
mean-field results are of O(N -1) and also small. The reason is simply that 
our mean-field approach (recall that we took a limit where two-particle 
interactions are small) is not an adequate description for realistic systems 
if the typical interparticle distances are of the order of the particle sizes 
itself, which is the case in the collapsed phase. Short-range repulsive forces 
[7 :~ 0 in (2.1)] and correlations will then be important. However, provided 
that (1) the typical interparticle distances are much larger than the 
particles sizes itself if the N particles are distributed statistically homo- 
geneously over the domain A, and (2) the range ro of the repulsive forces 
is of the size of the particles, i.e., of O(e), then the infimum of (2.30) 
behaves qualitatively exactly as that of (3.26). Note that then the high-tem- 
perature regime is described adequately by our mean-field approach, and 
further that (2.30) obeys the inequality (2.26). Our finding of the existence 
of a gravitational phase transition in the mean-field limit then implies that 
the more realistic exact finite-N systems, i.e., where the correlations and 
repulsive forces are not neglected, also show a kind of smooth phase 
change. This means that the state of the system changes drastically but 
differentiably (since N is finite) from a self-gravitating gas phase to a 
collapsed phase. Drastically means within a very narrow region of fl values. 
(From the above it should be clear that our results might be applicable to 
dilute self-gravitating systems in space and not to collision-dominated 
classical gases with strong repulsive short-range forces and weak gravita- 
tional interactions.) 

IV. The results derived in the present paper are  based on the 
prescription of the equilibrium measure (2.9). Although (2.9) is the usual 
canonical equilibrium measure, the crucial question is whether that 
measure actually describes the time-asymptotic state of the dynamical 
evolution, in the usual average sense, of classical self-gravitating matter 
with regularized interactions when that matter is in a finite box and subject 
to a thermal contact with a heat bath. This presents the problem of the 
dynamical accessibility of the derived equilibrium structures. Analytical 
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studies of the dynamical evolution of self-gravitating matter are extremely 
difficult. For the systems with smoothed-out interactions it should be 
possible, however, to test at least via particle simulation studies whether 
the systems tend to evolve into core-atmosphere type structures or not, 
when the temperature is still high enough to allow also the existence of 
shallow equilibria but is not too high, of course. Note that in particle 
simulation studies the particles are necessarily smeared out, which is 
equivalent to having smoothed-out interactions. So far, particle simulation 
studies (see, for instance, the discussion in ref. 3) do indeed often show a 
nucleation of the system. 

A possible verfication or falsification of the accessibility of the infimum 
state of the free-energy functional (3.26) has necessarily to take into 
account the confinement of the system to a finite container. In the first 
place the container is a mathematical tool that allows the calculation of 
equilibrium structures. The following shows that a container need not be a 
completely unrealistic assumption. A large, extended, self-gravitating 
system in space will surely show both a tendency of (the inner) parts of the 
system to shrink and a tendency of (the outer) parts to "evaporate." If 
the time scales for both processes are well separated, then a system in a 
container can be interpreted as the idealization where the ratio of the 
evaporation time scale to the collapse time scale becomes infinite. The mere 
existence of planets, stars, and galactic nuclei might be viewed at as a hint 
that there is something realistic to that concept. 

If we consider self-gravitating matter in all N3 which is a more 
realistic model for classical astrophysical applications, considerable doubt 
has been expressed concerning the applicability of calculating equilibria by 
means of concepts based on extremizing entropy-like functionals (7) (see 
also the discussion in ref. 40). By studying the influence of weak gravita- 
tional collisions (41'42) it has also been questioned whether a self-gravitating 
system should show the tendency to thermalize at all. Considering the 
dynamical counterpart of the equilibrium mean-field limit, i.e., the coUi- 
sionless Vlasov dynamics (see ref. 43 for a derivation of the Vlasov 
dynamics in the case of classical bounded interactions, and ref. 44 for the 
quantum mechanical pendant) with exact Newtonian interactions, a 
rigorous proof (45) has been given that the gravitational energy of an 
isolated self-gravitating system in N3 is bounded away from minus infinity 
for all times provided (1)the total energy is negative, and (2)the initial 
distribution function is bounded and has compact support on the single- 
particle phase space. At least for a collisionless isolated system in all N3 this 
is a proof that purely self-gravitating matter with smooth initial data will 
generally neither develop a point singularity nor thermalize. From these 
considerations it is to be expected that the concept of a thermal contact on 
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one hand  and  the inclusion of cor re la t ions  into the dynamics  on the o ther  
will p lay  decisive roles in future invest igat ions  of  whether  the col lapse  of 
self-gravi ta t ing ma t t e r  is dynamica l ly  accessible or  not. 
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